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Abstract: Cyber-attack models and their respective mitigation strategies have been recently
studied in the discrete event systems setting. Previous work focuses on whether unsafe behaviour
can be prevented using supervisory control theory. When unsafe behaviour cannot be prevented
with certainty, mitigation strageties are limited. This paper proposes the use of a probabilistic
discrete event system (PDES) framework to incorporate a likelihood measure for unsafe
behaviour in the attack models presented in Carvalho et al. (2018). The least-unsafe (LU)
supervisor problem is introduced to minimize this unsafe likelihood measure and improve
existing attack mitigation techniques. The LU supervisor problem under full observability is
solved by reformulating it into an MDP problem, and a computable algorithm is developed.
Lastly, the implementation of LU supervisors is discussed and illustrated with an example.
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1. INTRODUCTION

Many of today’s systems are controlled by embedded
computers that interact closely with their physical coun-
terparts through sensors and actuators. The increasingly
tight and complex cyber-physical coupling introduces new
risks that may be exploited by malicious intent (Ashibani
and Mahmoud (2017)). It is becoming increasingly impor-
tant to improve cyber-physical security to ensure safe and
sustainable operations (Banerjee et al. (2012)).

In recent years, there have been many works that focus on
modelling and analysing the effects of malicious attacks
on controller-plant interactions using discrete event sys-
tems (DES), such as Lima et al. (2018), Carvalho et al.
(2018), Rashidinejad et al. (2019), and Meira-Góes et al.
(2019). In Carvalho et al. (2018), four types of attacks are
considered: sensor erasure (SE), sensor insertion (SI), ac-
tuator enablement (AE), and actuator disablement (AD),
as illustrated in Figure 1. The attacker may manipulate a
predetermined subset of vulnerable sensors or actuators at
any given opportunity, simulating the worst-case scenario.
The attacker’s actions are assumed to be unobservable.
The intention is to bring the plant into an unsafe state,
which the supervisor is designed to avoid at all costs. The
authors developed algorithms in the DES framework that
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Fig. 1. Compromised closed-loop system, where the
attacker manipulates the supervisor’s observations
(SE/SI) and control actions (AE/AD)

generate models for a compromised closed-loop system
under each of the four attack types.

Building on the attack models, Carvalho et al. (2018)
introduced the general-form (GF) safe controllability con-
ditions to verify if a closed-loop system can detect and
mitigate these attacks. The work assumes that attacks do
not directly lead to immediate failure, but they do enable
illegal behaviours that may lead to failure. The framework
uses a detection module that attempts to deduce whether
an unobservable attack action has happened based on
the historical observable behaviour of the system. If an
attack is detected, a “disable-all” mitigation strategy is
used, where all controllable events are disabled to restrict
the system behaviour as much as possible. If a system is
GF safe controllable, the “disable-all” mitigation strategy



is effective in preventing the system from arriving at an
unsafe state. If a system is not GF safe controllable, the
“disable-all” mitigation strategy may be ineffective and
may disable access to some safe paths which causes a
higher likelihood of unsafe behaviour. This warrants a
better mitigation strategy, which is the motivation of this
paper.

In this work, the least-unsafe (LU) supervisor problem is
posed with the goal of a better mitigation strategy. The
problem considers a probabilistic discrete event system
(PDES) with a predefined set of unsafe states and seeks
to find the set of optimal supervisory actions that min-
imizes the probability of arriving at an unsafe state. In
the PDES literature, the concept of optimal control has
not been extensively studied, certainly not with the ob-
jectives presented in this paper. The conventional control
objective is to satisfy a given specification, as for example
in Pantelic et al. (2014). As an initial study, this paper
presents the solution of the LU supervisor problem for
fully observable systems. The results are then applied to
the attack mitigation scenario to produce a supervisor
that minimizes the probability of unsafe behaviour after
an attack detection. The remaining sections are organized
as follows. Section 2 provides an overview of the mathe-
matical notations of PDES. The LU supervisor problem is
formulated in Section 3. The solution to the LU supervisor
problem is presented in Section 4. Section 5 discusses the
implementation of the results. Lastly, Section 6 concludes
with contributions, a brief comment on partially observ-
able systems, and future work.

2. PROBABILISTIC DISCRETE EVENT SYSTEM

The formalism of PDES is less agreed upon and less
studied compared to its deterministic counterpart. For
example, the formalism in Garg et al. (1999) allows a ter-
mination probability in [0, 1] at each state while Pantelic
et al. (2014) allows termination probability of either 0 or 1.
Another example is the difference in control mechanics be-
tween Chattopadhyay and Ray (2009), where disablement
causes the event to self-loop with the same probability,
and Garg et al. (1999) along with Pantelic et al. (2014),
where disablement causes the redistribution of the event
probabilities. In this work, we use the same framework as
in Pantelic et al. (2014), which closely extends the DES
framework in Wonham and Cai (2019).

A PDES is denoted as G = (X,Σ, δ, x0, ρ) where X is
the set of states, Σ is the set of events, δ : X × Σ → X
is the partial transition function, x0 is the initial state,
and ρ : Σ ×X → [0, 1] is the state-wise event probability
distribution. We define that ρ(σ |x) = 0 ⇐⇒ δ(x, σ)�! (i.e.
δ(x, σ) is not defined).

L(G) ⊆ Σ∗ is the language generated by G. L(G, x) ⊆ Σ∗

is the language generated by G with initial state x. The
corresponding p-language Lp(G) : Σ∗ → [0, 1] is generated
by the following,

(i) Lp(G)(ε) = 1,

(ii) Lp(G)(sσ) =

{
Lp(G)(s) · ρ(σ|δ(x0, s)) if s ∈ L(G)

0 otherwise.

The conditional p-language of G of a string st given the
prefix s is expressed as

Lp(G)(st|s) =
Lp(G)(st)

Lp(G)(s)
.

Controllable and uncontrollable events are denoted as Σc
and Σuc, respectively, where Σ = Σc∪̇Σuc. The set of
admissible control patterns is defined as Γ := {γ ∈ 2Σ | γ ⊇
Σuc}. A supervisor is any mapping V : L(G) → Γ. The
automaton realization of V is denoted as S. The closed-
loop system of G under the supervision of V is denoted as
V/G. L(V/G) ⊆ Σ∗ is the closed-loop language generated
by V/G. We denote L(V/G, x) ⊆ Σ∗ as the closed-loop
language of V/G with initial state x.

There are two different control philosophies available for
PDES as suggested in Lawford and Wonham (1993):
deterministic supervisor and probabilistic supervisor. In
this paper, we study the mitigation of attacks using a
deterministic supervisor as it simplifies the problem and is
suitable for this initial study on the mitigation of attacks
using PDES. A probabilistic supervisor may be of interest
when studying the attack model in the context of attacker-
supervisor games. The p-language generated from G using
supervisor V : L(G)→ Γ, denoted as Lp(V/G), is defined
as

(i) Lp(V/G)(ε) := 1,

(ii) Lp(V/G)(sσ) :=


Lp(V/G)(s) · p(σ|δ(x0, s), V (s))

if s ∈ L(V/G) ∧ σ ∈ V (s)

∧sσ ∈ L(G)

0 otherwise
where, given s ∈ L(G),

p(σ|δ(x0, s), V (s)) :=


ρ(σ|δ(x0, s))∑

σ′∈V (s) ρ(σ′|δ(x0, s))

if σ ∈ V (s)

0 otherwise

.

3. PROBLEM FORMULATION

The objective is to find a supervisor that minimizes the
total probability of a system, G, from entering the set
of unsafe states Xus ⊆ X starting from the initial state
x0. Let Lus(G) = {s ∈ L(G) | δ(x0, s) ∈ Xus} be the
unsafe language of G. It is assumed that the probabilistic
information embedded in G has been measured by the
designer. We make an important assumption about the
set of unsafe states.

Assumption 1. All unsafe states Xus of a given plant G
are terminating states and have no outgoing events: thus,

(∀x ∈ Xus)(∀σ ∈ Σ) δ(x, σ)�!.

We believe that such an assumption is reasonable because
it signifies the system’s inability to operate after a catas-
trophic failure.

Let V be the set of all supervisors with respect to G. The
main problem of this paper is formulated as follows.

Problem 1. (The LU supervisor problem). Given a PDES
G and its set of unsafe states Xus ⊆ X, find a least-unsafe
(LU) supervisor V ∗, if it exists, such that
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∑
s∈Lus(V ∗/G)

Lp(V
∗/G)(s) = inf

V ∈V

∑
s∈Lus(V/G)

Lp(V/G)(s),

(1)
where Lus(V/G) := L(V/G) ∩ Lus(G) is the unsafe lan-
guage of G under the supervision of V .

Let PGus(V ) =
∑
s∈Lus(V/G) Lp(V/G)(s), which is called

the total unsafe probability of G under the supervision of
V . Hence, the supervisor V ∗, if it exists, achieves the
minimum total unsafe probability given the system G.
The LU supervisor problem is formulated without the
complications of attack detection and partial observability,
to focus on finding the optimal supervisor. Section 5 will
discuss the implementation of the LU supervisor in the
attack detection and mitigation framework.

4. SOLUTION AND COMPUTATIONAL
METHODOLOGY

The approach in solving the LU supervisor problem under
full observation is to reformulate it into a Markov decision
process (MDP). Denote the set of states with a set of
integers X = {0, 1, ..., I − 1}, where I is the cardinality
of X, |X|. We assume 0 to be the initial state. Let xt be a
random variable that realizes the state on X after t event
evolutions. Note that in the DES under consideration,
there is no sense of time. Thus, our “time” measure is
the number of events that have occurred. In the MDP
framework, the feedback policy g = {g0, g1, ...}, where
gt : X → Γ, is a state-based feedback, in contrast to
the language-based supervisory control V : L(G) → Γ.
Note that the DES framework does not support a feedback
controller dependent on t. Nevertheless, if a state-based
feedback policy g is stationary, i.e. g = {g, g, ...}, then g
can be implemented by constructing the supervisor

Vg(s) = g(δ(0, s)) for all s ∈ L(G). (2)

Thus, hereafter, we only consider the class of stationary
policies g = {g, g, ...}.

4.1 The Transition Structure

Consider the stationary policy g = {g, g, ...}. Let {xt} and
{vt} be the resulting processes, where vt = g(xt) ∈ Γ. The
processes under a fixed g can be described by the stochastic
difference equation

xt+1 = f(xt, vt, σt+1), vt ∈ Γ, σt+1 ∈ Σ (3)

where

f(xt, vt, σt+1) :=

{
δ(xt, σt+1) if σt+1 ∈ vt
undefined otherwise

and the transition probabilities associated with f are

P [f(i, v, σ) = j] = P{σ | δ(i, σ) = j and σ ∈ v}
=

∑
σ∈v : δ(i,σ)=j

p(σ|i, v)

:= Pij(v).

(4)

We define the transition probability matrix P(g) where
Pij(g) = Pij(g(i)), which denotes the probability of going
from state i to j based on policy g.

A PDES contains a mixture of terminating and non-
terminating processes. If there are no events defined at i or

all events at i have been disabled by the control action v,

then i has a zero continuation probability
∑I−1
j=0 Pij(v) =

0. This leads to issues in the MDP framework. To resolve
this, the transition structure is modified, without loss
of generality, to include the dump state, I. The new
augmented state space is denoted as Xaug := {0, 1, ..., I −
1, I}. The transition structure is modified as follows. For
all i, j ∈ X

Pij(v) =
∑

σ∈Σ : δ(i,σ)=j

p(σ|i, v), (5a)

PiI(v) = 1 if [(∀σ ∈ Σ) δ(i, σ)! =⇒ σ /∈ v], (5b)

PII(v) = 1. (5c)

4.2 The Cost Structure and the LU Supervisor Problem

The following per-stage cost structure c : Xaug → {0, 1} is
imposed on the MDP process.

c(i) :=

{
1 if i ∈ Xus

0 otherwise.
(6)

Define the expected cost functional Jg : Xaug → R as

Jg(i) := lim
N→∞

Eg
x0=i

N−1∑
t=0

c(xt), (7)

where Eg
x0=i is the expectation conditioned on i being the

initial state and the policy g being used.

Theorem 2. Given a state-based supervisor, or in other
words a stationary feedback policy, g, the cost functional
satisfies Jg(0) = PGus(Vg), where Vg is obtained through
(2).

Proof. First, the probability distribution of xt given x0 =
i and policy g we be expressed in the DES framework as

P (xt = j|x0 = i,g) =
∑

s∈L(Vg/G,i) :
δ(i,s)=j∧|s|=t

Lp(Vg/G, i)(s). (8)

The proof can be shown through direct derivation.

Jg(0) = lim
N→∞

Eg
x0=0

N−1∑
t=0

c(xt)

= lim
N→∞

N−1∑
t=0

I∑
j=0

P (xt = j|x0 = 0,g) c(j).

Substituting in (8), we get

= lim
N→∞

N−1∑
t=0

I∑
j=0

∑
s∈L(Vg/G) :
δ(0,s)=j∧|s|=t

Lp(Vg/G)(s) c(j).

The limit and the first sum reduce to sum over strings of
all lengths. Substituting in the cost (6), the second sum is
only over the unsafe states. Thus we arrive at

=
∑

s∈Lus(Vg/G)

Lp(Vg/G)(s)

= PGus(Vg).

�

Using this result, we take the infimum over all stationary
policies on both sides to conclude the following.
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Corollary 3. Let G be the space of all stationary policies,
we have that

inf
g∈G

Jg(0) = inf
g∈G

PGus(Vg). (9)

Since the space of all stationary policies is finite, we can
replace infimum with minimum

min
g∈G

Jg(0) = min
g∈G

PGus(Vg). (10)

The LU supervisor problem is now an undiscounted, posi-
tive cost, infinite-horizon MDP with a finite state space
Xaug, transition probability matrix P(g), and a finite
action space Γ. Closely following notations in Bertsekas
(1983), let

T (J)(i) = min
v∈Γ

Eσ {c(i) + J [f(i, v, σ)]} (11)

and for a given policy g, define

Tg(J)(i) = Eσ {c(i) + J [f(i, g(i), σ)]} . (12)

Standard results from dynamic programming state that
the optimal cost functional, J∗, and the optimal policy,
g∗, satisfy the optimality equation J∗ = T (J∗) = Tg∗(J

∗).
The cost functional induced by g, Jg, satisfies Jg =
Tg(Jg). The optimal policy is well known to be a stationary
policy (Strauch (1966)). Therefore, there is no need to
consider a non-stationary g in Theorem 2. For the general
undiscounted, infinite-horizon MDP, the optimal solution
may only be approximated using successive approximation
due to

J = T (J) (13)

and

Jg = Tg(Jg) (14)

having multiple fixed-points. We now exploit this specific
Markov structure to obtain the solution to (14).

Denote Tg ⊂ Xaug as the set of transient states and
Rg ⊆ Xaug as the set of recurrent states of G under the
policy g.

Lemma 4. Rg does not contain any unsafe states. Thus,
c(i) = 0 for all i ∈ Rg.

Proof. (Sketch) By assumption, unsafe states are ter-
minating states. This implies that all unsafe states are
transient states to the dump state. Thus, Rg does not
contain any unsafe states. �

Proposition 5. Given a feedback policy, g, we have that

Jg(i) = 0 for all i ∈ Rg. (15)

Proof. Assume i ∈ Rg, {xt} is the resulting process
given x0 = i, and the stationary policy g is used. Using
x0 = i ∈ Rg and xt ∈ Rg =⇒ xt+1 ∈ Rg, we can
conclude, by induction, that (∀t > 0) xt ∈ Rg. By Lemma
4, (∀t > 0) c(xt) = 0 and substituting into (7), we get that

Jg(i) = lim
N→∞

Eg
x0=i

N−1∑
t=0

c(xt) = lim
N→∞

Eg
x0=i

N−1∑
t=0

0 = 0.

�

Let us examine solutions to (14) in view of Proposition 5.

Definition 6. Given a policy g, we define a solution to (14)
to be admissible if for all i ∈ Rg,

Jg(i) = 0.

Expanding (14) and rearranging the state indices 0 to τ−1
to be all the transient states and indices τ to I to be all
the recurrent states, we get

Jg(0)

.

.

.

Jg(τ − 1)

Jg(τ)

.

.

.

Jg(I)

 =

 PTg PT ·Rg

0 PRg

·


Jg(0)

.

.

.

Jg(τ − 1)

Jg(τ)

.

.

.

Jg(I)

 +


c(0)

.

.

.

c(τ − 1)

0

.

.

.

0

 .
(16)

Theorem 7. Given a stationary feedback policy g and the
per-stage cost (6), (14) has exactly one admissible solution.

Proof. Applying Proposition 5, we have Jg(τ) = ... =
Jg(I) = 0 in (16). The direct result of Theorem 3.1.1
from Kemeny and Snell (1976) can be applied to conclude
that the inverse (I − PTg) exists. Thus, we may evaluate

(I−PTg)−1 ·cTg , where cTg = [c(0) ..., c(τ−1)]T , to obtain
Jg(0), ..., Jg(τ − 1), analytically. �

4.3 The LU Supervisor Algorithm

Combining successive approximation and results from
Theorem 7, Algorithm 1 is a proposed method to com-
pute the LU supervisor policy. The LU supervisor policy
can be implemented using a language-based supervisor
V ∗ : L(G)→ Γ through (2). By restricting the co-domain
of g∗ to Γ in (18), V ∗ does not violate the controllability
condition in the DES framework by construction. The
following is an example for Algorithm 1.

Consider the system G shown in Figure 2a, where Σc =
{c, d} and Xus = {3, 6}. There are uncontrollable paths
to the unsafe states b(ab)∗b ∪ b(ab)∗f . For notational
convenience, denote the control actions as cd = Σ, c̄d =
Σ− {c}, c̄d̄ = Σ− {c, d}, and cd̄ = Σ− {d}.
In Step 1, we augment the system to include the dump
state, state 7, so we have Xaug = {0, 1, 2, 3, 4, 5, 6, 7}.
States 3, 5, and 6 transition to state 7 with probability
1. No other state can be a terminating state through a
control action, thus no other states transition to 7. The
cost per stage is

c(0) = c(1) = c(2) = c(4) = c(5) = c(7) = 0,

c(3) = c(6) = 1.

In Step 2, we initialize J0(0) = J0(1) = J0(2) = J0(3) =
J0(4) = J0(5) = J0(6) = J0(7) = 0. In iteration 1, we have

J1(0) = J1(1) = J1(2) = J1(4) = J1(5) = J1(7) = 0,

J1(i = 3) = J1(i = 6) = c(i) = 1.

In iteration 2, we have

J2(0) = J2(5) = J2(7) = 0,

J2(1) = 0 with g(1) = cd̄ as the minimizing action,

J2(2) = 0.2 with g(2) = cd as the minimizing action,

J2(3) = J2(6) = 1,

J2(4) = c(4) + (0.1)J1(3) = 0.1.

In Step 3, we obtain the approximate optimal policy g̃∗

which is defined
4



Algorithm 1 LU supervisor policy: full observation

Input:
• G = (X,Σ, δ, x0, Xm, p) the PDES model of the plant
• Σc the controllable event set
• Xus ⊆ X the set of unsafe states

Output:
• The LU supervisor policy g∗ = {g∗, g∗, ...}, where
g∗ : Xaug → Γ

Algorithm:
STEP 1: Let Xaug := X ∪ {I} and initialize J0(i) = 0 for

all i ∈ Xaug.
STEP 2: Perform value iteration up to an arbitrary num-

ber of iterations with

Jk+1(i) = min
v∈Γ

c(i) +

I∑
j=0

Pij(v)Jk(j)


for i ∈ Xaug

(17)

where Pij(v) is obtained from (5). Exit if Jk+1 =
Jk.

STEP 3: Obtain the approximated optimal control using

g̃∗(i) = arg min
g(i)∈Γ

c(i) +

I∑
j=0

Pij [g(i)]Jk(j)


for i ∈ Xaug.

(18)

STEP 4: Solve J
g̃∗

= T
g̃∗

(J
g̃∗

) for J
g̃∗

:

(a) Classify all states in Xaug. Collect all tran-
sient states into T

g̃∗
and all recurrent states

into R
g̃∗

. (See Hachtel et al. (1996) or Xie

and Beerel (1998) for state classification al-
gorithms.)

(b) Set J
g̃∗

(i) = 0 for all i ∈ R
g̃∗

.

(c) Extract the transient-to-transient transition
matrix PT

g̃∗
from P

g̃∗
.

(d) Compute JT
g̃∗

= (I −PT
g̃∗

)−1 · cT
g̃∗

, which

corresponds to J
g̃∗

(i) for all i ∈ T
g̃∗

.

STEP 5: Check if J
g̃∗

satisfies the optimality equation,

i.e. J
g̃∗

= T (J
g̃∗

). If not, go back to STEP 2.

Otherwise, set of optimal policy g∗ = g̃∗ and
terminate.

g̃∗(0) = g̃∗(3) = g̃∗(4) = g̃∗(5) = g̃∗(6) = g̃∗(7) = cd

(arbitrary),

g̃∗(1) = c̄d̄, (or cd̄ which gives the same minimization)

g̃∗(2) = cd.

Figure 2b shows the resulting closed-loop system using
policy g̃∗.

For Step 4a, the transient states and the recurrent states
are as follows:

R
g̃∗

= {1, 7}, T
g̃∗

= {0, 2, 3, 4, 5, 6}.

For Step 4b, we set J
g̃∗

(1) = J
g̃∗

(7) = 0. For Step 4c, the

transient transition matrix (states 0, 2, 3, 4, 5, and 6) can
be obtained from Figure 2b and is

PT
g̃∗

=


0 0.3 0 0 0 0

0.1 0 0.1 0.5 0.1 0.1
0 0 0 0 0 0
0 0 0.1 0 0.9 0
0 0 0 0 0 0

 .
In Step 4d, we solve for the cost functional J

g̃∗
using PT

g̃∗

and cT
g̃∗

= (0, 0, 1, 0, 0, 1)T . We arrive at

J
g̃∗

(0) = 0.077, J
g̃∗

(1) = J
g̃∗

(5) = J
g̃∗

(7) = 0,

J
g̃∗

(2) = 0.258, J
g̃∗

(3) = J
g̃∗

(6) = 1, J
g̃∗

(4) = 0.1.

In Step 5, it is easy to check that J
g̃∗

, indeed, satisfies the

optimality equation J
g̃∗

= T (J
g̃∗

). Hence, we set g∗ = g̃∗

and terminate the algorithm with Jg∗(0) = PGus(g
∗) =

0.077.

Let us study the system using intuition. First, observe
that we can “trap” the process in the self-loop at state
1 by disabling the events c and d, where it will self-loop
forever and never reach unsafe states 3 or 6. At state 2,
we enable event d to divert the probabilities from events
b and f into the trap state 1. At state 4, we have a
relatively high probability of the system executing event
e and arriving at state 5 where it has no access to the
unsafe states. Thus, event c is enabled at state 2. With
the LU supervisor implemented, we have PGus(g

∗) = 0.077.
The open-loop would have PGus(enable-all) = 0.596. The
disable-all strategy results in PGus(disable-all) = 0.162.

4.4 Discussion on State-based Policy vs. Language-based
Supervisory Control

The question addressed in this section is whether searching
in the space of state-based policies, g : X → Γ, and not
considering language-based supervisors, V : L(G) → Γ,
is too limiting? And, can a certain V achieve a lower
minimum? An advantage that V may have over g is that it
uses a string that describes the precise historical behaviour
of the system, as opposed to knowing just the current
state. However, results of dynamic programming show
that state feedback is sufficient for optimality and any
form of historical information does not provide further
improvement. Searching in the space of all language-
based feedback policies would be redundant. The optimal
language-based supervisor can be found within the subset
of supervisors that behave like a state-based controller. In
other words, all supervisors Vg such that for all s, t ∈ L(G),

δ(x0, s) = δ(x0, t) =⇒ Vg(s) = Vg(t).

5. THE LEAST-UNSAFE ATTACK MITIGATION
SYSTEM

This section discusses the implementation of the LU su-
pervisor as an enhancement of the “disable-all” mitigation
strategy in the attack detection-and-mitigation framework
introduced in Carvalho et al. (2018). Figure 3 illustrates an
overview of the least-unsafe attack mitigation architecture.
Ga and Sa are the attack models of G and S, respectively
(see Carvalho et al. (2018)). GD is the attack detection
module. An interrupt signal INT is sent to the switch
when GD enters an attack-certain state.
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Fig. 2. An example for the LU supervisor policy algorithm
(a) is the plant, (b) closed-loop system using the LU
supervisor.
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Fig. 3. Least unsafe attack mitigation architecture

The assumption of full observability limits applicability
of the presented approach in studying attack mitigation
systems. Nevertheless, the LU supervisor is only utilized
after an attack detection. Thus, we only impose the
assumption of full observability on the portion of the
system after an attack detection. The LU supervisor policy
generated in Algorithm 1 may be implemented under the
following two conditions.

(1) The current state is known with probability 1 when
an attack has been detected. Under such a situation,
GD should only have one element in its attack-certain
state at the moment of detection.

(2) There are no occurrences of unobservable events in
all subsequent behaviour from the attack detection
state.

We now illustrate the LU supervisor under full observation
with a simple example.

Consider the system G given in Figure 4 where Σc = {a},
Σ = {a, b, c, d}, and Xus = {5}. To avoid the unsafe state,
the nominal supervisor Snom is designed to be maximally
permissive while preventing any uncontrollable behaviour
to the unsafe state. The system is vulnerable to sensor
erasure attacks on event b, hence Σv = {b} and Σav = {ba}
are the vulnerable event and corresponding attack event,
respectively. GM is the resultant attack model generated
using the SE-attack algorithm from Carvalho et al. (2018).
Observing Figure 4c, the attack detection module confirms
that an attack has happened after observing the string
ad, at which the “disable-all” mitigation strategy is de-
ployed. Notice that at the instance of attack detection,
the system’s current state is 3 w.p. 1 and all downstream
behaviours do not contain any unobservable events. Thus,
Algorithm 1 may be applied.

Figure 5a shows the subsystem Ga,3 = (X,Σ, δ, 3, Xm)
from Ga with state 3 as the initial state and its PDES
description. The intuition is to divert the system into en-
tering state 4 where it has a higher probability of arriving
at the safe state 6. Enabling event a at state 3 results in

P
Ga,3
us (SLU ) = 0.34, which is the LU supervisory action of
SLU,3. Figure 5b shows the system under the “disable-all”
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(c) GM+ “disable-all”

Fig. 4. Example of an attack model and the “disable-all”
mitigation strategy
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Fig. 6. Example of least-unsafe attack mitigation system
under full observation assumption

mitigation strategy, which results in P
Ga,3
us (Sdisable−all) =

0.5. Stitching the two closed-loop subsystems together,
the final behaviour of the least-unsafe attack mitigation
strategy is shown in Figure 6.

6. CONCLUSION

This paper introduces a probabilistic attack model that
builds on Carvalho et al. (2018) by using a probabilistic
DES framework, which leads to the formulation of the
least-unsafe (LU) supervisor problem. For fully observ-
able systems, the LU supervisor problem is reformulated
into a positive cost, undiscounted, infinite-horizon MDP
problem. Algorithm 1 is developed to compute the LU
supervisor. The implementation of the least-unsafe attack
mitigation system with the integration of the LU supervi-
sor is illustrated with an example.

While not studied in this paper, under partial observation,
the LU supervisor problem can be reformulated into an
undiscounted, infinite-horizon, partially observable MDP
(POMDP), Unfortunately, effective computational meth-
ods to solve the resulting POMDP analytically are not
available. Some special cases are examined in Wang (2019).

Future work consists of studying the convergence rate of
Algorithm 1 and a further in-depth study of the LU super-
visor problem under partial observation. Further investiga-
tion may also be carried out on using linear programming
in Algorithm 1 rather than successive approximation based
on the work of de Alfaro (1999). A comparison study
between the LU-supervisor and other attack modelling

frameworks and mitigation strategies would also be of
interest.
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