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Synthesis of Supervisors Robust Against Sensor Deception
Attacks

Rômulo Meira-Góes, Stéphane Lafortune, Hervé Marchand

Abstract—We consider feedback control systems where sensor readings
may be compromised by a malicious attacker intending on causing
damage to the system. We study this problem at the supervisory layer of
the control system, using discrete event systems techniques. We assume
that the attacker can edit the outputs from the sensors of the system before
they reach the supervisory controller. In this context, we formulate the
problem of synthesizing a supervisor that is robust against the class of edit
attacks on the sensor readings and present a solution methodology for this
problem. This methodology blends techniques from games on automata
with imperfect information with results from supervisory control theory
of partially-observed discrete event systems. Necessary and sufficient
conditions are provided for the investigated problem.

Index Terms—discrete-event systems, cyber-physical systems, cyber-
security, supervisory control.

I. INTRODUCTION

Protection of feedback control systems against cyber-attacks in
critical infrastructures is an increasingly important problem. In this
paper, we consider sensor deception attacks at the supervisory layer
of a feedback control system. We assume that the underlying cyber-
physical system has been abstracted as a discrete transition system
(the plant in this work), where sensor outputs belong to a finite set
of (observable) events. These events drive the supervisory controller,
or simply supervisor, that controls the high-level behavior of the
system via actuator commands, which also belong to a finite set of
(controllable) events. In the context of this event-driven model, we
incorporate a malicious attacker that has compromised a subset of the
observable events and is able to delete actual sensor readings or to
inject fictitious ones in the communication channel to the supervisor.
The goal of the attacker is to leverage its knowledge of the plant
and the supervisor models, and to use its event-editing capabilities
to steer the plant state to a critical state where damage to the plant
occurs. In this work, we investigate the problem of synthesizing a
supervisor robust against any attacker with these capabilities.

Several works have addressed in recent years problems of cyber-
security in the above context. In [1], [2], the authors developed
diagnostic tools to detect when controlled systems are being attacked.
Their work is closely related to the work on fault diagnosis in
discrete event systems, and it is applicable to both sensor and/or
actuator attacks. Our problem differs from the problem considered
in these works since we aim to compute a supervisor that is robust
against attacks without using a separate diagnostic tool. However,
their method only works for attacks that are detectable/diagnosable
(non-stealthy). Moreover, once an attack is detected, their solution
forces the supervisor to disable all controllable events.

In [3]–[7], the problem of synthesizing supervisors robust against
attacks was investigated. Our work differs from [3], [4], [7] as we
provide a general game-theoretical framework that solves the problem
of synthesizing supervisors robust against general classes of sensor
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deception attacks. The solution methodology in [3], [4], [7] follows
the standard supervisory control solution methodology, where only
results about one robust supervisor against a specific class of sensor
deception attacks is provided. Conditions on the existence of robust
supervisors against a possible set of sensor deception attacks with a
normality condition on the plant are provided in [3]. A methodology
to synthesize the supremal controllable and normal robust supervisor
against bounded sensor deception attacks is given in [4]. The results
of [5] are related to actuator and sensor replacement deception attacks
while actuator and sensor deception attacks are considered in [6].
However, the supervisory control framework in [6] differs from the
standard framework since the authors assume that the supervisor can
actively change the state of the physical process. Finally, [7] provides
a methodology to synthesize a maximal controllable and observable
supervisor against unbounded sensor deception attacks.

The game-theoretical framework adopted in this paper provides
necessary and sufficient conditions for the problems of existence
and synthesis of robust supervisors against general classes of sensor
deception attacks. This game-theoretical approach provides a struc-
ture that incorporates all robust supervisors against sensor deception
attacks. Different robust supervisors can be extracted from this struc-
ture, e.g., maximal controllable and observable, supremal controllable
and normal, etc. In fact, the robust supervisors from [3], [7] are
embedded in this structure. Moreover, there is a natural extension of
our solution methodology such that robust supervisors from [4] are
embedded in this structure as well.

In summary, our work does not impose any normality condition as
imposed in [3], [4] and studies synthesis and existence of robust su-
pervisors against any sensor deception attack. Our approach considers
both bounded and unbounded sensor deception attacks. Moreover,
necessary and sufficient conditions are provided for the existence
and synthesis of robust supervisors, whereas in [3] only existence
conditions are provided and in [4] only a sufficient condition is
provided.

Of particular relevance to this paper is the work in [8], where the
synthesis of stealthy sensor deception attacks assuming a fixed and
known supervisor is considered; in this sense, [8] pertains to attack
strategies. Herein, we consider the “dual” problem of synthesizing a
supervisor that is robust against sensor deception attacks; thus, this
paper is focused on defense strategies.

We wish to synthesize a supervisor that provably prevents the plant
from reaching a critical state despite the fact that the information
it receives from the compromised sensors may be inaccurate. Our
problem formulation is based on the following considerations. The
attack strategy is a parameter in our problem formulation, i.e.,
our problem formulation is parameterized by different classes of
sensor deception attacks. If there is no prior information about the
attack strategy, then an “all-out” attack strategy is considered. Our
solution methodology comprises two steps and leverages techniques
from games on automata under imperfect information and from
supervisory control of partially-observed discrete event systems. We
build a game arena to capture the interaction of the attacker and
the supervisor, under the constraints of the plant model. The arena
defines the solution space over which the problem of synthesizing
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supervisors with the desired robustness properties can be formulated.
In this solution space, called meta-system, we use supervisory control
techniques to enforce such robustness properties. We leverage the
existing theory of supervisory control under partial observation [9]–
[12] to solve this meta-supervisory control problem. As formulated,
the meta-supervisory control problem has a unique solution. This
solution embeds all robust supervisors for the original plant, thereby
providing a complete characterization of the problem addressed in
this paper.

Our presentation is organized as follows. Section II introduces
necessary background and the notation used throughout the paper.
In Section III, we formalize the problem of synthesis of supervisors
robust against this attack model. We define the construction of the
game arena and present the solution of the (meta-)synthesis problem
in Section IV. Section V discusses some benefits of our solution
methodology. Finally, we conclude the paper in Section VI. This
paper was shortened to fit space limitations; a more complete version,
with proofs, is available in [13].

II. PRELIMINARIES

We assume that the given cyber-physical system has been ab-
stracted as a discrete transition system that we model as a finite-
state automaton. A finite-state automaton G is defined as a tuple
G = (XG,Σ, δG, x0,G), where XG is the finite set of states; Σ is
the finite set of events; δG : XG ×Σ→ XG is the partial transition
function; x0,G ∈ XG is the initial state. The function δG is extended
in the usual manner to domain XG × Σ∗. The language generated
by G is defined as L(G) = {s ∈ Σ∗|δG(x0,G, s)!}, where ! means
“is defined”.

In the context of supervisory control of DES [9], system G needs to
be controlled in order to satisfy safety and liveness specifications. In
this work, we consider only safety specifications. In order to control
G, the event set Σ is partitioned into the set of controllable events and
the set of uncontrollable events, Σc and Σuc. The set of admissible
admissible control decisions is defined as Γ = {γ ⊆ Σ|Σuc ⊆ γ}.
A supervisor, denoted by S, dynamically disables events such that
the controlled behavior is provably “safe”. In other words, S only
disables controllable events to enforce the specification on G.

In addition, when the system is partially observed due to limited
sensing capabilities of G, the event set is also partitioned into Σ =
Σo∪Σuo, where Σo is the set of observable events and Σuo is the set
of unobservable events. Based on this second partition, the projection
function PΣΣo : Σ∗ → Σ∗o is defined for s ∈ Σ∗o and e ∈ Σ
recursively as: PΣΣo(ε) = ε and PΣΣo(se) = PΣΣo(s)e if e ∈ Σo,
PΣΣo(s) otherwise. The inverse projection P−1

ΣΣo
: Σ∗o → 2Σ∗ is

defined as P−1
ΣΣo

(t) = {s ∈ Σ∗|PΣΣo(s) = t}.
Supervisor S makes its control decisions based on strings of

observable events. Formally, a partial observation supervisor is a
(partial) function S : Σ∗o → Γ. The resulting controlled behavior
is a new DES denoted by S/G, resulting in the closed-loop language
L(S/G), defined in the usual manner (see, e.g., [14]). Normally, a
supervisor S is encoded by an automaton R known as the supervisor
realization, where every state encodes a control decision. Throughout
the paper, we use interchangeably supervisor S and its realization R.

We also recall the notions of controllability, observability, and
normality for a prefix-closed language K ⊆ L(G). We say the
language K is

• controllable w.r.t. to Σc, if KΣuc ∩ L(G) ⊆ K;
• observable w.r.t. to Σo and Σc, if (∀s ∈ K, ∀e ∈ Σc : se ∈
K)[P−1

ΣΣo
(PΣΣo(s))e ∩ L(G) ⊆ K];

• normal w.r.t. to Σo and Σc, if K = P−1
ΣΣo

(PΣΣo(K)) ∩ L(G).

Example II.1. We use the following example as illustrative example
throughout the paper. The plant G is depicted in Fig. 1(a) where
Σc = Σo = {a, b}. The supervisor shown in Fig. 1(b) guarantees
that state 4 is unreachable in the supervised system R/G.
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(a) Plant G with Σc = {a, b} and
Σo = {a, b}.

b b

a
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c

c

(b) Supervisor R.

Fig. 1: Running example. Observable events have solid arrows and
unobservable events have dashed arrows. Controllable events have
marks across their arrows.

For convenience, we define useful operators and notation that we
use throughout this paper. First, ΓG(Q) is defined as the set of active
events at the set of states Q ⊆ XG of the automaton G, given by:

ΓG(Q) := {e ∈ Σ|(∃x ∈ Q)[δG(x, e)!]} (1)

By an abuse of notation, we use ΓG(x) = ΓG({x}) for x ∈ XG.
The unobservable reach of the subset of states Q ⊆ XG under the

subset of events γ ⊆ Γ is given by:

URγ(Q) := {x ∈ XG | (∃t ∈ (Σuo ∩ γ)∗)[x ∈ δG(Q, t)]} (2)

where δG(Q, t) = ∪x∈Q{δG(x, t)} and we consider δG(x, t) = ∅ if
δG(x, t) is not defined. The observable reach of the subset of states
Q ⊆ XG given the execution of the observable event e ∈ Σo is
defined as:

NXe(Q) := δG(Q, e) (3)

We define by trim(G,Q) the operation that returns the accessible
subautomaton of G after deleting states Q ⊆ XG. For any string
s ∈ Σ∗, |s| is the length of s. We denote by eis the ith event of s
such that s = e1

se
2
s . . . e

|s|
s . Lastly, si denotes the ith prefix of s, i.e.,

si = e1
s . . . e

i
s and s0 = ε.

III. ROBUST SUPERVISORY CONTROL AGAINST DECEPTION

ATTACKS

A. Notation

We first define useful notation for this section. Since we consider
that the observability properties of the events are static, and not
dynamic, we assume that the attacker only affects observable events;
clearly, an insertion of an unobservable event would lead to imme-
diate detection of the attacker by the supervisor (whose transition
function is only defined for observable events). For this reason, we
define the set Σa ⊆ Σo to be the compromised event set. These
are the events that the attacker has the ability to alter, where “alter”
means it can insert or delete events.

We define the set of inserted events Σia = {ei | e ∈ Σa} and the
set of deleted events Σda = {ed | e ∈ Σa}. These sets represent the
actions of an attacker, and we use subscripts to distinguish them from
events generated by G such that Σia ∩Σ = Σda ∩Σ = Σia ∩Σda = ∅.
We call the events in Σ as legitimate events, events that are not
insertion nor deletion. For convenience, we define Σea = Σia ∪ Σda,
Σo,e = Σo ∪ Σea and Σm = Σ ∪ Σea.

We define three projection operators with Σm as domain and Σ
as co-domain: (1) M is defined as M(ei) =M(ed) =M(e) = e
for e ∈ Σ; (2) PG(e) =M(e) for e ∈ Σ ∪ Σda and PG(e) = ε for



3

e ∈ Σia; (3) PS(e) = M(e) for e ∈ Σ ∪ Σia and PS(e) = ε for
e ∈ Σda. The maskM removes subscripts, when present, from events
in Σm, PG projects an event in Σm to its actual event execution in
G, and PS projects an event in Σm to its event observation by S.

B. Modeling sensor deception attacks

We assume that the attacker hijacks the communication channel
between the plant and the supervisor and it can modify the readings
of events in Σa, as depicted in Fig. 3. Intuitively, the attacker is
modeled similarly as a supervisor. The attacker takes its actions based
on observing a new event e ∈ Σo from G and its memory of the past
modified string. Note that, we assume that the attacker observes the
same observable events as the supervisors. Formally, we model an
attacker as a nondeterministic string edit function.

Definition III.1. Given a system G and a subset Σa ⊆ Σo, an
attacker is defined as a partial function fA : Σ∗o,e × (Σo ∪ {ε}) →
2Σ∗o,e \ ∅ s.t. fA satisfies the following constraints ∀s ∈ Σ∗o,e and
e ∈ Σo:

1) fA(ε, ε) ⊆ Σia
∗; fA(s, ε) = {ε} when s 6= ε;

2) If e ∈ Σo \ Σa : fA(s, e) ⊆ {e}Σia
∗;

3) If e ∈ Σa: fA(s, e) ⊆ {e, ed}Σia
∗.

The function fA captures a general model of deception attack.
Namely, fA defines a substitution rule where the observation e is
replaced by a string in the set fA(s, e). Condition (1) allows event
insertions when the plant is in the initial state and constrains the
substitution rule based on observation of events from G1. Condition
(2) constrains the attacker from erasing e when e is outside of Σa.
However, the attacker may insert an arbitrary string t ∈ Σia

∗ after
the occurrence of e. Lastly, condition (3) allows events e ∈ Σa to be
edited to any string t ∈ {e, ed}Σia

∗.
For simplicity, we assume that the function fA has been encoded

into a finite-state automaton A = (XA,Σo,e, δA, x0,A) where δA is
complete with respect to Σo\Σa and for any (e ∈ Σa, q ∈ XA) then
(δA(q, e)!∨ δA(q, ed)!). This assumption will be used later when we
explain the composition in the definition of the closed-loop behavior
under attack. Let A encode an fA, then the function fA is extracted
from A as follows: ∀s ∈ L(A) and e ∈ Σo, fA(s, e) = {t ∈
{e, ed}Σia

∗ | δA(x0,A, st)!}, fA(ε, ε) = {t ∈ Σia
∗ | δA(x0,A, t)!},

and fA(s, e) = ∅ for all s ∈ Σ∗o,e \ L(A) and e ∈ Σo. In [13], we
show how to relax the above assumption on automaton A to encode
attack functions.

This formulation provides a simple way to handle attack functions
and it characterizes the behavior of the attacker. It also provides a
way to define specific attackers that are more constrained than the
constraints of Def. III.1. In other words, the automaton A encodes
different attack strategies, e.g., replacement attack, bounded attack,
etc.

One important attack strategy for this problem is the all-out
attack strategy introduced in [1], [15]. In this model, the attacker
could attack whenever it is possible. Hereafter, if there is no prior
information about the attack strategy, then we assume that the attacker
follows the all-out attack strategy. The following example provides
two attack strategies for Example II.1, one of these strategies is the
all-out strategy.

Example III.2. Attack functions fA1 and fA2 for the system defined
in Example II.1 and Σa = {b} were encoded in automata A1 and A2

1Observe that clause (1) of Def. III.1 corrects a mistake in the correspond-
ing clause (1) of Def. 2 in [8], where ∅ was inadvertently used instead of {ε}
for initializing fA(s, ε). We thank J.-B. Jeannin for bringing this issue to our
attention.

depicted in Fig. 2. Automaton A1 encodes the all-out strategy for this
example. Although the all-out strategy is a nondeterministic strategy
since the attacker can try all possible combinations of attacks, its
automaton representation is a deterministic automaton. Only one state
is necessary to encode the all-out strategy. Automaton A2 encodes a
one sensor reading deletion attack strategy.

1

a,b,bd,bi

(a) A1 - all-out strategy.

1

a a,b

bd

(b) A2 - one deletion strategy

Fig. 2: Representation of two attack functions

C. Controlled system under sensor deception attack

The attacker in the controlled system induces a new controlled
language. Referring to Fig. 3, R, A and PS together effectively
generate a new supervisor SA for the system G.

Fig. 3: Sensor deception attack framework

To characterize the interaction of attacker A with the system G
and supervisor realization R, we must modify the behavior of G and
R such that it takes into account possible modifications of A. We
use the method in [7], where G and R are augmented with attack
actions providing an attacked system Ga and an attacked supervisor
Ra.

Definition III.2. Given G and Σa, we define the attacked plant Ga
as: Ga = (XGa = XG,Σm = Σ ∪ Σea, δGa , x0,Ga = x0,G) where
δGa(x, e) = δG(x, PG(e)) and δG(x, ε) = x.

Similarly to the construction of Ga, we can modify the behavior
of R to reflect the modifications made by an attacker on the
communication channel.

Definition III.3. Given R and Σa, we define the attacked supervisor
as: Ra = (XRa = XR,Σm, δRa , x0,Ra = x0,R) where

δRa(x, e) :=


δR(x, PS(e)) if M(e) ∈ ΓR(x)
x if e ∈ Σia and M(e) 6∈ ΓR(x)
undefined otherwise

We assume that the supervisor “ignores” insertions of controllable
events that are not enabled by the current control action at state x.
This assumption is specified by the second condition in the definition
of δRa . Namely, the insertion made by the attacker is ineffective at
this state. In some sense, this means that the supervisor “knows”
that this controllable event has to be an insertion performed by the
attacker, since it is not an enabled event.

Based on Ga, Ra and A, we define the closed-loop language of
the attacked system to be L(SA/G) = PG(L(Ga||Ra||A)), where
|| is the standard parallel composition operator [14]. Recall that the
transition function of A is complete with respect to Σo \Σa and for
any (e ∈ Σa, q ∈ XA) then δA(q, e)! ∨ δA(q, ed)!. Therefore, the
attacker is incapable of disabling events of G.
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Example III.3. We return to our running example. Figure 4 depicts
the attacked system Ga, the attacked supervisor Ra, and the super-
vised attacked system Ga||Ra||A1, where A1 is the all-out attack
strategy shown in Fig. 2(a). Note that state 4 is reachable in the
supervised attacked system.

b,bd b,bd
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c
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(a) Ga
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(b) Ra
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1,C

b

b

b

bd

bd

bi

bi

bibd

(c) Ga||Ra

Fig. 4: Supervisory control under sensor deception attack

Remark III.1. Even though the attack function fA is nondeterminis-
tic, the language generated by the attacked system is uniquely defined,
i.e., L(SA/G) = PG(L(Ga||Ra||A)). In [3], the nondeterministic
attack function defined therein generates maximal and minimal at-
tacked languages. Similar to the problem encountered in [16], the
maximal language possibly contains strings that the supervised plant
cannot generate while the minimal does not define all possible strings
that this controlled plant generates. This issue does not arise in our
context. Our language definition also differs from the one in [4]. Even
though an attacker could have a string of insertions to send to the
supervisor, it does so by sending one event at the time. On the other
hand in [4], the attacker sends the entire string modification to the
supervisor.

D. Robustness against deception attacks

We investigate the problem of synthesizing a supervisor R robust
against the attack strategy A. We assume that the plant G contains a
set of critical states defined as Xcrit ⊂ XG; these states are unsafe
in the sense that they are states where physical damage to the plant
might occur. Although damage is defined in relation to the set Xcrit,
it could be generalized in relation to any regular language by state
space refinement.

Definition III.4. Supervisor R is robust (against sensor deception
attacks) with respect to G, Xcrit and A, if for any s ∈ L(SA/G)
then δG(x0,G, s) 6∈ Xcrit.

The definition of robustness is dependent on the attack strategy A.
Recall that the all-out strategy encompasses all other attack strategies
[1]. Therefore, a supervisor that is robust against the all-out strategy
is robust against any other A [7].

Problem III.1 (Synthesis of Robust Supervisor). Given G, Xcrit
and an attack strategy A, synthesize a robust supervisor R, if one
exists, with respect to G, Xcrit and A.

We are asking that the robust supervisor should prevent the plant
from reaching a critical state regardless of the fact that it might

receive inaccurate information. In other words, the supervisor will
react to every event that it receives, but since it was designed to be
robust to A, the insertions and deletions that A performs will never
cause G to reach Xcrit. This will be guaranteed by the solution
procedure presented in the next section.

IV. META-SUPERVISOR PROBLEM

In this section, we present our approach to solve Problem III.1.
We briefly explain the idea of our approach. Figure 5 shows the
connection of the problem formulation space (left box) and the
solution space (right box). The connection between these two spaces
is given by the arrows that cross the two boxes. These arrows are
labeled by results provided in this section.

In the left box of Fig. 5, we have the problem formulation space
where the supervisor R is unknown. Based on G, Σo, Σc and A, we
construct a meta-system, called A, in a space where all supervisors
are defined. This construction is given in Definition IV.5. The meta-
system is part of the proposed solution space and it is represented in
the right box of Fig. 5.

Although all supervisors are defined in A, which is shown by
Proposition IV.1, we are only interested in robust supervisors. In
order to obtain robust supervisors, we use techniques of partially
observed supervisory control theory [11], [12] in the meta-system.
The structure Asup is obtained via Definition IV.7 and it contains all
robust supervisors against sensor deception attacks on Σa.

Finally, to return to our problem formulation space, we extract
one supervisor, if one exists, from Asup. Such extraction is given by
Algorithm 1.

Fig. 5: Relation of the system and the meta-system

A. Definition

Inspired by the techniques of two-player reachability games, we
construct an arena as it is constructed in these games. In the arena,
player 1 represents the supervisor while player 2 represents the
adversarial environment. The arena exhaustively captures the game
between the supervisor and the environment, where the supervisor
selects control decisions (Γ) and the environment executes events
(Σo,e). In the arena, player 1’s transitions record a control decision
made by the supervisor. On the other hand, player 2’s transitions
represent actions of the plant G or actions of the attacker A. Formally,
the arena is defined as follows.

Definition IV.5. Given plant G and attack function A, we define the
arena A as 4-tuple:

A = (Q1 ∪Q2, A1 ∪A2, h1 ∪ h2, q0) (4)

where,
• Q1 ⊆ 2XG×XA is the set of states where the supervisor issues

a control decision. Its states have the form of (S1, S2), where
S1 is the estimate of the states (as it is executed by the plant)
of G and S2 is the attacker’s state. For convenience we define
the projection operators Ii((S1, S2)) = Si for i ∈ {1, 2};
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• Q2 ⊆ 2XG ×XA × Γ × ({ε} ∪ Σa) is the set of states where
the adversarial environment issues a decision. Its states have the
form (S1, S2, γ, σ), where S1 and S2 are defined as in Q1 states,
γ is the last control decision made by the supervisor, and σ is
related to inserted events. The event σ is equal to e ∈ Σa if the
last transition was ei ∈ Σia, otherwise it is equal to ε. We use
the same projection operators Ii for states in Q2 for i ∈ {1, 2};

• A1 = Γ and A2 = Σo,e are respectively the actions/decisions
of player 1 and player 2;

• h1 : Q1×A1 → Q2 is built as follows: for any q1 = (S1, S2) ∈
Q1 and γ ∈ A1

h1(q1, γ) :=
(
URγ(S1), S2, γ, ε

)
(5)

• h2 : Q2 × A2 → Q1 ∪ Q2 is built as follows for any q2 =
(S1, S2, γ, σ) ∈ Q2:

Let e ∈ Σo:

h2(q2, e) =


(
NXe(S1), δA(S2, e)

)
if (e ∈ ΓG(S1) ∩ γ)∧

(e ∈ ΓA(S2)) ∧ (σ = ε)(
S1, S2

)
if (σ = e)

undefined otherwise
(6)

Let e ∈ Σa:

h2(q2, ei) =


(
S1, δA(S2, ei), γ, e

)
if (ei ∈ ΓA(S2))∧

(σ = ε)
undefined otherwise

(7)

h2(q2, ed) =


(
URγ(NXe(S1)), δA(S2, ed), γ, ε

)
if (e ∈ ΓG(S1) ∩ γ)∧

(ed ∈ ΓA(S2)) ∧ (σ = ε)
undefined otherwise

(8)

• q0 ∈ Q1 is the initial S-state: q0 := ({x0,G}, x0,A).

We explain the definition of the transition functions h1 and h2

in detail. The definition of h1 is simple and it defines a transition
from player 1 to player 2, which records a control decision made
by the supervisor, and it updates G’s state estimate according to this
decision. On the other hand, h2 is more complex since player 2 has
two types of transitions.

The first type is transitions from player 2 to player 1 which
characterizes the visible decision made by the environment and is
related to events in Σo. These transitions are defined in Eq. (6),
and they are illustrated in Fig. 6. In Fig. 6(a), an event e ∈ Σo
that is feasible in G from some state in S1 is selected; thus, both
the state estimate and the attacker’s state are updated. In Fig 6(b),
q2 = (S1, S2, γ, e) ∈ Q2 is reached after an insertion since e 6= ε;
thus, G’s state estimate and the attacker’s state remain unchanged.

(a) First transition of Eq. (6) (b) Second transition of Eq. (6)

Fig. 6: Transition function h2 from player 2 to player 1

Transitions from player 2 to itself characterize invisible, from the
supervisor’s perspective, decisions. They are only defined for events
in Σea . These transitions are defined by Eqs. (7-8). An attacker can
insert any event in e ∈ Σa, as long as ei is allowed in the current
attacker’s state. The inserted events e ∈ Σia are not going to be seen
by the supervisor, as only the attacker knows it decided to insert the

event. Insertions will be seen by the supervisor as genuine events.
But ei represents here (in the context of the game arena) the intention
of the attacker to insert. Equation (7) (depicted in Fig. 7(a)) is the
unobservable part, where an insertion decision was selected and the
attacker’s state and the fourth component of q2 ∈ Q2 are updated.
The observable part is shown by Fig. 6(b). In the case of a deleted
event, from the supervisor’s perspective, it is seen as an ε event as
well. That is, the supervisor cannot change its control decision when
the attacker deletes an event, as shown in Fig. 7(b).

(a) Transition of Eq. (7) (b) Transition of Eq. (8)

Fig. 7: Transition function h2 from player 2 to player 2

Remark 1: The elements of Q1 and Q2 are defined such that they
incorporate the “sufficient information” (in the sense of information
state in system theory) that each player needs to make its respective
decision. Equations (5-8) guarantee by construction that the updates
of the information states are consistent with the plant dynamics and
the actions of the attacker. Overall, the arena constructed thereby
captures the possible attacks and all possible supervisors in a finite
structure. We prove both results later on.

Example IV.4. We return to our illustrative example to show results
on the construction of the arena. We construct A for the system G,
Xcrit = {4} and A1 depicted in Fig. 2(a). Since we construct A for
the all-out attack strategy, we can omit the attacker state. The arena
has a total of 26 states; for this reason, we do not show the entire
arena but just part of it2. Figure 8 illustrates a part of A constructed
with respect to A1 and G. We specify the missing transitions in gray.
We can observe the encoding of insertion and deletion in this arena.
For example, at state ({1}, {a, b, c}, ε) the transition bi goes to state
({1}, {a, b, c}, b) and then transition b takes state ({1}, {a, b, c}, b)
to state ({1}).

{1}

{2}
a

{a,b,c}

{2,3},{a,b,c},

{a,b,c}

{3},{a,b,c},

bd bd

{1},{a,b,c},b

{1},{a,b,c}, 

bi

b

{3}
b

b,a

{1},{a,c}, 

a

{a,c}

{a,b,c}

{a,c}
{b,c}

{c}

bd bibib

{a,b,c}

{a,c}
{b,c}

{c}

{c}{b,c}

{c}

{b,c}

{a,c}

Fig. 8: Part of A

For convenience, we extend the definition of h2 based on a given
control decision. We define a transition function H2 that always start
and end in Q2 states. This notation simplifies walks in A.

Definition IV.6. We define the function H2 : Q2 ×Σo,e × Γ→ Q2

as:

H2(q, e, γ) :=


h1(h2(q, e), γ), if e ∈ Σo
h2(q, e) if e ∈ Σda
h1(h2(h2(q, e),M(e)), γ), if e ∈ Σia
undefined, otherwise

(9)

The function H2 can be recursively extended for strings s ∈
Σ∗o,e given a sequence of control decisions γ1 . . . γ|s|, i.e.,
H2(q, s, γ1 . . . γ|s|) = H2(H2(q, s|s|−1, γ1 . . . γ|s|−1), e

|s|
s , γ|s|).

2A figure of the full arena is depicted in [13].
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B. Properties

For a fixed supervisor R and attacker A, we obtain the language
L(Ga||Ra||A) which contains the possible string executions in the
attacked system, e.g., strings of events in Σm = Σ ∪ Σea. Given a
string s ∈ PΣmΣo,e(L(Ga||Ra||A)), we can find the state estimate
of Ga after execution of s, i.e., the state estimate of Ga under
supervision of Ra and attack strategy A. Formally, this state estimate
is

RE(s) ={x ∈ XGa | x = δGa(x0,Ga , t) for

t ∈ P−1
ΣmΣo,e

(s) ∩ L(Ga||Ra||A)} (10)

In the construction of A, we allow the attacker to insert events
that are not allowed by the current control decision (see Eq. (7)).
Therefore, given a supervisor R, we need to define its control
decisions for all s ∈ Σ∗o, differing from the usual definition only
for s ∈ PΣΣo(L(G)). For this reason, we extend the function δR to
be a complete function in Σo.

∆R(x, e) =

{
δR(x, e) if e ∈ ΓR(x)
x otherwise

(11)

for x ∈ R and e ∈ Σo. Intuitively, ∆R extends δR by simply ignoring
the events that are not defined in δR. The function ∆R is extended
to s ∈ Σ∗o as δR is extended. Lastly, we define the control decision
of R for any s ∈ Σ∗o as:

CR(s) = ΓR(∆R(x0,R, s)) (12)

Based on H2 and CR, we show that the arena A computes the
same state estimates based on the supervisor R and attacker A as
the ones computed based on Ga||Ra||A. This result is shown in
Proposition IV.1.

Proposition IV.1. Given a system G, a supervisor R, an attack
function A and arena A, then for any s ∈ PΣmΣo,e(L(Ga||Ra||A)),
we have that

H2(x0, s, γ1 . . . γ|s|)! (13)

I1(H2(x0, s, γ1 . . . γ|s|)) = RE(s) (14)

I2(H2(x0, s, γ1 . . . γ|s|)) = δA(x0,A, s) (15)

where x0 = h1(q0, CR(ε)) and γi = CR(PS(si)).

Recall that in the left box of Fig. 5 the supervisor is unknown.
Equation (13) tells us that the arena captures all possible interactions
between any supervisor R and attack function A with the plant G.
It captures all possible interactions since Proposition IV.1 is true
regardless of the supervisor R and of the attack function A. This
is one of the main benefits of constructing the arena A. It defines a
space where all supervisors and attacker actions based on A for the
plant G exist.

Moreover, Eqs. (14-15) says that the arena correctly captures the
interaction between the attacker, supervisor and plant. Equation (14)
computes G’s state estimate of based on the modified string s ∈
PΣmΣo,e(L(Ga||Ra||A)) and the control decisions taken by R along
the observed string. These estimates capture an agent that has full
knowledge of the modification on the string s and the decisions taken
by R. On the other hand, Eq. (15) establishes the correct state of the
attacker A in the construction of A.

The arena A has, in worst-case, |XA|2|XG| Q1-states and
|XA|(|Σa|+ 1)2|XG|+|Σc| Q2-states given that |Γ| ≤ 2|Σc|. Conse-
quently, the worst-case running time of the construction of the arena
A is O(|XA||Σo|22|XG|+|Σc|) since Σa ⊆ Σo. We can construct
A starting from its initial state and performing a breadth-first search
based on equations h1 and h2.

C. Solution of the Meta-Control problem

Our approach to solve Problem III.1 is to consider the above-
constructed arena A as the uncontrolled system in a meta-control
problem, which is posed as a supervisory control problem for a
partially-observed discrete event system, as originally considered in
[10]. For that reason, we will refer to A as the meta-system. As will
become clear in the following discussion, this supervisory control
approach naturally captures our synthesis objectives, and moreover
supervisory control theory provides a complete characterization of
the solution. Such a methodology was previously used in [17], [18]
for instance; however, in these works the meta-control problem is a
control problem under full observation. The same situation does not
apply in our case, where events in Σea are unobservable (from the
supervisor’s perspective).

To formally pose the meta-control problem, we need a specification
for the meta-system. In fact, the specification emerges from the
corresponding specification in Problem III.1, which states that the
controlled system should never reach any state in Xcrit. The same
specification is to be enforced in A, where the state estimate of G
represents the reachable states of G. Thus, the specification for the
meta-control problem is that the meta-controlled system should never
reach any state q ∈ Q1 ∪Q2 such that I1(q) ∩Xcrit 6= ∅.

The next step in the meta-control problem formulation is to specify
the controllable and observable events in the meta-system A. We
already mentioned that all e ∈ Σea are unobservable events. In fact,
they are the only unobservable events in A since they are moves of
the attacker that the supervisor does not directly observe. In regard
to the controllable events, the supervisor makes decisions in order
to react to the decisions made by the environment. Therefore, the
events in A1 \{Σuc} are controllable, while those in A2∪{Σuc} are
uncontrollable. Note that, we explicitly exclude the control decision
composed only of uncontrollable events as a meta-controllable event;
the supervisor should always be able to at least enable the uncon-
trollable events, otherwise it would not be admissible. In this way,
the supervisor can always issue at least one control decision, i.e.,
enable all uncontrollable plant events. We are now able to formulate
the meta-control problem.

Definition IV.7. Given A constructed with respect to G and A, with
events E = A1 ∪ A2, Ec = A1 \ {Σuc} as the set of controllable
events and Euo = Σea as the set of unobservable events. Let Atrim =
trim(A,M) be the specification automaton, where M = {q ∈ QA1 ∪
QA2 |I1(q) ∩ Xcrit 6= ∅}3. Calculate the supremal controllable and
normal sublanguage of the language of Atrim with respect to the
language of A, and let this supremal sublanguage be generated by
the solution-arena denoted by Asup.

Note that all controllable events in the meta-control problem are
also observable, i.e., Ec ⊆ Eo. Therefore, the controllability and
observability conditions are equivalent to the controllability and
normality conditions. Hence, in this case, the supremal controllable
and observable sublanguage exists and is equal to the supremal
controllable and normal sublanguage; see, e.g., §3.7.5 in [14]. As
consequence a supremal and unique solution of the meta-control
problem exists. This solution is the language generated by the
solution-arena Asup.

The state structure of Asup will depend on the algorithm used to
compute the supremal controllable and normal sublanguage ofAtrim.
One example of the structure of Asup is provided.

Example IV.5. We return to our running example. Based on A, we
obtain Asup using an integrated (for controllability and normality)

3We use superscripts to differentiate the different arena structures, e.g., A,
Atrim, etc.
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iterative algorithm to compute the supremal controllable and normal
sublanguage that is based on preprocessing the input automata to
satisfy simultaneously a strict sub-automaton [14] condition and a
State Partition Automaton [19] condition. As part of the algorithm,
one needs to refineA so that its observer is a state partition automaton
(using algorithm in [19]), i.e., to compute A||Obs(A), where Obs is
the observer operation with respect to Euo [14]. The resulting Asup is
depicted in Fig. 9. Each state in Asup is a tuple, where the first com-
ponent is a state in A and the second component is a state in Obs(A),
where obs1 = {({1}, {b, c}, ε), ({1}, {b, c}, b), ({3}, {b, c}, ε),
({3}, {b, c}, b)} and obs2 = {({1}, {c}, ε), ({3}, {c}, ε)}.

{1},

{{1}}

{2},

{{2}}

{c} ({1},{c},  )

{({1},{c},  )} 

{a,c}

a

({2,3},{c},  ),

{({2,3},{c},  )}

{c}

{b,c}({1},{b,c},  ), 

obs1

{1},

{{1},{3}}

{3},

{{1},{3}}

({3},{b,c},  ), 

obs1

bd

bd

({1},{b,c},b), 

obs1

({3},{b,c},b), 

obs1

bi bi

bb bb

{b,c}{b,c}

({1},{c},  ), 

obs2

({3},{c},  ), 

obs2

{c}

{c}

({1},{a,c},  ),

{({1},{a,c},  )}

Fig. 9: Asup

Regardless of the algorithm to obtain Asup, it has a structure with
Q1-like states and Q2-like states, since it accepts a sublanguage of
Atrim. Namely, it has states where only control decisions are allowed
(Q1 states) and states where only transitions with events in Σo,e are
defined (Q2 states). Thus, we can use the functions previously defined
for A in Asup.

Remark IV.2. The worst-case running time to obtain the supremal
controllable and normal sublanguage is exponential in product of the
number of states of the system and the specification [20]. Therefore,
the worst-case running time to obtain the Asup is O(2(|Q1|+|Q2|)2).

The way A is constructed is such that it embeds the set of all
supervisors for the original plant G. Therefore, the uniqueness of
the language generated by Asup and the fact that it is the supremal
solution of the meta-control problem means that the structure Asup

embeds a family of supervisors S, where the controlled behavior
generated by each member of that family does not reach any state
in Xcrit. Moreover, since A is constructed taking into account the
attack function A, this family of supervisors is robust with respect
to A. This leads us to the following result.

Theorem IV.1. A supervisor R is a robust su-
pervisor with respect to A if and only if (∀s ∈
PΣmΣo,e(L(Ga||Ra||A)))[HA

sup

2 (x0, s, γ1 . . . γ|s|)!], where
x0 = h1(qA

sup

0 , CR(ε)) and γi = CR(PS(si)).

Corollary IV.1. Asup = ∅ if and only if there does not exist any
robust supervisor R with respect to attacker A.

Theorem IV.1 states that a supervisor is robust if and only if it
is embedded in Asup. Next, Corollary IV.1 gives a necessary and
sufficient condition for the existence of a solution for Problem III.1.
Given that there exists a robust supervisor, we provide an algorithm4

to extract a supervisor that solves Problem III.1. First, we define
function H1 as we defined H2.

Definition IV.8. Let the function H1 : Q1 × Σo,e × Γ → Q1 be
defined as:

H1(q, e, γ) :=


h2(h1(q, γ), e), if e ∈ Σo
q if e ∈ Σda
h2(h2(h1(q, γ), e),M(e)), if e ∈ Σia
undefined, otherwise

(16)

4There are different manners for a designer to extract a robust supervisor.

Algorithm 1 Robust Supervisor Extraction

Input: Asup

Output: Rr = (XRr ,Σ, δRr , x0,Rr )
1: x0,Rr = qA

sup

0

2: XRr ← {x0,Rr}, δRr ← ∅
3: Expand(x0,Rr )
4: procedure EXPAND(x)
5: select γ ∈ ΓAsup(x) s.t. ∀γ′ ∈ ΓAsup(x) : γ 6⊂ γ′
6: for all e ∈ Σ ∩ γ do
7: if e ∈ Σo then
8: y = HA

sup

1 (x, e, γ), δRr ← δRr ∪ (x, e, y)
9: XRr ← XRr ∪ {y}

10: if y /∈ XRr then
11: Expand(y)
12: end if
13: else
14: δRr ← δRr ∪ (x, e, x)
15: end if
16: end for
17: end procedure

Algorithm 1 starts at the initial state of Asup and performs a Depth
First Search by selecting the largest control decisions at each state
that it visits. By largest, we mean that it selects a control decision
that is not a subset of any other control decision defined at state x,
as described by line 5. Note that, it is possible to have more than two
decisions that satisfy this condition. In this case, the algorithm selects
one of the possible decisions in a nondeterministic manner. The
algorithm terminates since Asup is finite. Moreover, the algorithm
only traverses player 1 states, where the control decisions are defined.

Corollary IV.2. A supervisor Rr constructed by Algorithm 1 is a
solution for Problem III.1.

Remark IV.3. The worst-case running time of Algorithm 1 is linear
in the number of state of Asup. For this reason, the running time
of the entire synthesis procedure is exponential in the number of
states of A. Since the number of states of A is exponential in the
number of states of G, the overall worst-case running time is double
exponential in the number of states of G, which is one exponential
order smaller than in [4] and one exponential order higher than in
[7], two references that were reviewed in Section I.

Example IV.6. To conclude this section, we provide two supervisors
extracted via Algorithm 1. These two supervisors are depicted in
Fig. 10.

b

b

A B

cc

(a) Robust supervisor R1

a

A B

cc

(b) Robust supervisor R2

Fig. 10: Robust supervisors with respect to A1

V. SELECTING SUPERVISORS IN THE ROBUST ARENA

Algorithm 1 provides one way of extracting robust supervisors
from Asup. As we explained before, it selects maximal control
decisions in the Q1 states that the algorithm visits. Example IV.6
shows that this extraction does not provide specific information about
the language generated by supervised system once a supervisor is
selected, other than the fact that we are choosing a locally maximal
control decision. While supervisor R1 in Fig. 10(a) generates a live
language, supervisor R2 in Fig. 10(b) is blocking. Nonetheless, the
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space defined in Asup provides maximum flexibility in extracting
different supervisors since all robust supervisors are embedded in
Asup. The methods in [3], [4], [7] do not provide the flexibility of
Asup since they exploit algorithms of Supervisory Control Theory
where only one supervisor can be obtained at a time. In fact, when
explicit comparisons can be made, the supervisors obtained by their
methods are embedded in the corresponding Asup.

Another benefit of the construction of Asup is the ability to exploit
results in the area of turn-based two-player graph-games. Results
from these areas can be leveraged to study different manners of
extracting robust supervisors, e.g., to study quantitative versions of
the robust supervisor problem under some cost model [21]–[23].

We provide an example of a supervisor extraction algorithm based
on a quantitative measure. First, we define a measure over the super-
vised system R/G, i.e., over the states of the automaton G||R. Let the
set Xdead = {x ∈ XG||R | ΓG||R(δG||R(x, s)) = ∅ for s ∈ Σ∗uo}
be the set of states in G||R that can reach a deadlock state via an
unobservable string. We define r : XG||R → [0,+∞) ∪ {−∞} to
be a reward function for any (x, y) ∈ XG||R and c ∈ [0,∞) as:

r((x, y)) =


−∞ if x ∈ Xcrit
0 if (x, y) ∈ Xdead
c otherwise

(17)

The reward function r punishes states from where the system
G||R might deadlock. Based on the reward function r, we define
the following total reward for the supervised system G||R.

Reward(R,G) =
∑

x∈XG||R

r(x) (18)

We can generalize Algorithm 1 to incorporate this quantitative mea-
sure such that it extracts a supervisor from Asup that maximizes the
measure Reward(R,G). In our running example, this new method
extracts supervisor R1. Further, we can assume that the attacker
tries to minimize Reward(R,G) in this extraction method. In this
scenario, we would pose a min max problem in order to select a
supervisor from Asup. We leave these extensions for future work.

VI. CONCLUSION

We have considered a class of problems in cyber-security where
sensor readings in a feedback control system may be manipulated by
a malicious attacker. By formulating the problem at the supervisory
control layer of a cyber-physical system, we were able to leverage
techniques from games on automata under partial information and
from supervisory control of partially-observed discrete event systems
to develop a solution methodology to prevent damage to the system
when some sensor readings may be edited by the attacker. Our
problem formulation is parameterized by an attacker strategy over
a set of compromised events. In this manner, synthesis of robust
supervisors against sensor deception attack strategies is considered,
e.g., bounded attack strategies, replacement attack strategies, etc.
Moreover, if there is no prior information about the attacker strategy,
then we consider the general all-out attack strategy. A supervisor
robust against the all-out attack strategy is robust against any other
sensor deception attack strategy.

The space defined in Asup provides maximum flexibility in extract-
ing different supervisors since all robust supervisors are embedded
in Asup. As discussed in Section V, it would be interesting to
investigate methods to extract supervisors from Asup in order to
satisfy additional constraints, such as optimality with respect to some
quantitative criterion [21], [22]. Finally, identifying ways to reduce
the state space of the arena by exploiting a suitable notion of state
equivalence is another important research direction.
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[7] R. Meira-Góes, H. Marchand, and S. Lafortune, “Towards resilient
supervisors against sensor deception attacks,” in 2019 IEEE 58th Annual
Conference on Decision and Control (CDC), Dec 2019.
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