
Towards probabilistic intrusion detection
in supervisory control of discrete event systems 1

Rômulo Meira-Góes ∗ Christoforos Keroglou ∗∗ Stéphane Lafortune ∗

∗ Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, USA
e-mail: {romulo,stephane}@umich.edu

∗∗ Division of Decision and Control Systems, School of Electrical
Engineering and Computer Science

KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: keroglou@kth.se

Abstract: In control systems, sensor deception is a class of attacks where an attacker manipulates
sensor readings to cause damage to the system. Our work investigates quantitative measurements to
detect this class of attacks in the context of stochastic supervisory control. We introduce the notion of ε-
safe systems, which is a first step to generalize qualitative intrusion detection conditions to quantitative
intrusion detection conditions. We provide sufficient and necessary conditions to verify if a system is
ε-safe. Moreover, we provide an algorithm that verifies these conditions, which implies that the problem
is decidable.

Keywords: Supervisory control and automata; Discrete event modeling and simulation; Intrusion
detection; Security;

1. INTRODUCTION

The control community recently started to incorporate security
aspects into the design of feedback control systems (Cardenas
et al., 2008; Teixeira et al., 2012). Understanding and designing
feedback control systems that are robust against attacks is of
critical importance nowadays. A key step towards feedback
control systems that are robust against attacks is an intrusion
detection system. This paper focuses on the design of better
intrusion detection modules for control systems. We investigate
this problem in the context of stochastic supervisory control
theory, where the underlying uncontrolled system has been
abstracted as a stochastic discrete transition system (the plant in
this work), where sensor outputs belong to a finite set of events.
Driven by these events, a high-level supervisory controller,
or simply supervisor, controls the behavior of the plant via
actuator commands.
Based on this event-driven model, we incorporate an attacker
that hijacks a subset of the events and sends to the supervisor
incorrect information about the plant’s sensors; this type of
attack is known as sensor deception attack. In this scenario,
an intrusion detection module monitors the behavior of the
controlled system and decides if an attacker is disrupting the
nominal controlled behavior.
Prior work on security against sensor deception attacks in the
field of Discrete Event Systems (DES) (Rashidinejad et al.,
2019) mainly focuses on designing attack strategies for fixed
supervisors (Meira-Góes et al., 2017; Su, 2018; Meira-Góes
et al., 2019a,b), on designing intrusion detection modules for
fixed supervisors (Thorsley and Teneketzis, 2006; Carvalho
et al., 2018; Lima et al., 2019) or designing robust supervi-
sors (Su, 2018; Meira-Góes et al., 2019c; Wang et al., 2020).
Some of these works considered stochastic models (Thorsley
1 The work of R.M.G. and S.L. is supported by US NSF grant CNS-1738103.

and Teneketzis, 2006; Meira-Góes et al., 2019b), while the
remainder considered logical models.
In (Thorsley and Teneketzis, 2006), the attacker rewrites actu-
ator commands with given probabilities. Although these prob-
abilities generate a probabilistic measure on the controlled sys-
tem, the intrusion detection problem is investigated under a
logical framework. The works of (Carvalho et al., 2018; Lima
et al., 2019) extend the intrusion detection problem for general
attack models, including sensor and actuator attacks, under the
same logical framework.
Since intrusion detection in the context of logical models is
a strong requirement, there is a need to develop quantitative
frameworks for detection of sensor deception attacks, to com-
plement the logical approach. To investigate this problem, we
propose to adopt a stochastic framework where the plant is a
stochastic automaton under the control of a logical determin-
istic supervisor. In this context, we are able to calculate likeli-
hoods of attacks based on strings observed by the supervisor.
The stochastic framework adopted is similar to the one in
(Meira-Góes et al., 2019b) and is inspired by the prior work
in (Kumar and Garg, 2001). We introduce the notion of ε-safe
systems which is a first step to generalize the qualitative notions
of logical intrusion detection to quantitative notions of intrusion
detection. The definition of ε-safety captures quantitatively the
attacks that are undetectable by a logical intrusion detection
module that operates on the controlled system, assuming a
fixed supervisor and a set of compromised events (sensors).
Intuitively, an attacker might leave a detectable probabilistic
trace when it modifies the nominal controlled behavior.
The paper is organized as follows. Section 2 introduces the nec-
essary background used throughout the paper. The framework
of supervisory control theory under sensor deception attacks is
presented in Section 3. Section 4 presents the definition of ε-
safe systems and the verification problem of this property. In

Section 5, we provide the solution methodology for the studied
problem and discuss its correctness. We conclude the paper in
Section 6.

2. PRELIMINARIES

2.1 Supervisory control

We consider the supervisory level of a feedback control sys-
tem, where the uncontrolled system is modeled as a De-
terministic Finite-State Automaton (DFA) in the discrete-
event modeling formalism. A DFA is denoted by G =
(XG,Σ, δG, x0,G, XG,m), where XG is the finite set of states,
Σ is the finite set of events, δG : XG × Σ → XG is the partial
transition function, x0,G is the initial state and XG,m is the
set of marked states. The function δG is extended, in the usual
manner, to the domain XG × Σ∗.
For any string s ∈ Σ∗, s[i] denotes the ith event of s such that
s = s[1]s[2] . . . s[|s|], where |s| denotes the length of s. The
ith prefix of s is denoted by si, namely si = s[1] . . . s[i] and
s0 = ε. Finally, N is the set of natural numbers, [n] is the set
of natural numbers bounded by n and [n]+ is the set of positive
natural numbers bounded by n.
The language and the marked language generated by G are
defined by L(G) = {s ∈ Σ∗|δG(x0,G, s)!} and Lm(G) = {s ∈
L(G)|δG(x0,G, s) ∈ XG,m}, where ! means that the function
is defined for these arguments. A string s ∈ L(G) generates a
unique run x1s[1]x2 . . . s[n]x|s|+1, where xi+1 = δG(xi, s[i])

for i ∈ [|s|]+ and x1 = x0,G. A sub-run in G is defined
as x1s[1]x2 . . . s[n]x|s|+1, where xi+1 = δG(xi, s[i]) for i ∈
[|s|]+ and x1 ∈ XG. The active event set of state x ∈ XG is
defined as ΓG(x) = {σ ∈ Σ|δG(x, σ)!}. Lastly, the operation
CoAc(G) = (XCoAc(G),Σ, δCoAc(G), x0,CoAc(G), XG,m), as
in (Cassandras and Lafortune, 2008), returns the coaccessible
part of automaton G, i.e., L(G) = pre(Lm(G)), where pre(L)
returns all the prefixes of language L.
The system G, in supervisory control theory, is considered as
the plant (uncontrolled system) that needs to be controlled to
meet a desired specification. The limited control capabilities
in G are characterized by partitioning the set Σ into two
disjoint sets, the set of controllable events Σc and the set of
uncontrollable events Σuc.
A supervisor dynamically enables/disables controllable events
of the plant such that it generates a controlled behavior that sat-
isfies a desired specification. A supervisor is formally defined
as a function S : Σ∗ → Γ, where Γ = {γ ⊆ Σ|Σuc ⊆ γ} is the
set of admissible control decisions. The closed-loop behavior
of the controlled system is denoted by S/G and defined by
the language L(S/G); see, e.g., (Cassandras and Lafortune,
2008). Without loss of generality, S is realized by an automaton
R = (XR,Σ, δR, x0,R).

2.2 Stochastic supervisory control

We consider a stochastic DES modeled as a Probabilistic Finite-
State Automaton (PFA). A PFA is denoted by H = (XH ,Σ,
PH , x0,H , XH,m), where XH , Σ, x0,H and XH,m are defined
as in a DFA, PH : XH × Σ × XH → [0, 1] is the transi-
tion probability function. The probability function PH(x, σ, y)
specifies the probability of moving from state x ∈ XH to
state y ∈ XH with event σ ∈ Σ. When it is convenient, we
use the notation P x,σ,yH = PH(x, σ, y) and we write PσH(x)
when ∃y ∈ XH such that P x,σ,yH > 0. We only consider the

case of nonterminating PFA, i.e., for any x ∈ XH we have
that

∑
σ∈Σ P

σ
H(x) = 1. This assumption is without loss of

generality, as any terminating PFA can be transformed into a
nonterminating one, as shown in (Lawford and Wonham, 1993).
The function δH is defined to bridge the gap between a PFA
and a DFA, where δH(x, σ) = y if P x,σ,yH > 0. In this work, we
assume that δH is deterministic, i.e., there does not exist y, y∗ ∈
XH , y∗ 6= y, such that P x,σ,yH > 0 and P x,σ,y

∗

H > 0. Using
this definition, every PFA H is associated to a corresponding
DFA G where δG(x, σ) = δH(x, σ) and L(H) := L(G). For
simplicity, whenever we use a DFA operator in a PFA H , it
means that we are analyzing the corresponding DFA G.
Finally, the notion of probabilistic languages (p-languages) of
a PFA was introduced in (Garg et al., 1999). Formally, Lp(H) :
Σ∗ → [0, 1] is defined for s ∈ Σ∗ and σ ∈ Σ as :

Lp(H)(ε) = 1 (1)

Lp(H)(sσ) =

{
Lp(H)(s)P x,σ,yH if x = δH(x0,H , s)

y = δH(x0,H , sσ)
0 otherwise

(2)

In stochastic supervisory control theory, the system H is con-
sidered as the plant but there are different manners of studying
its closed-loop behavior (Lawford and Wonham, 1993; Kumar
and Garg, 2001; Pantelic et al., 2014). In this paper, we use the
results of supervisory control of stochastic DES introduced by
(Kumar and Garg, 2001), where only the plant behaves stochas-
tically. Namely, both the specification and the supervisor are
deterministic and defined as in the previously-described super-
visory control framework. However, the supervisor alters the
probabilistic behavior of the plant via the control actions it takes
(disabling events). Conditions for the existence of a supervisor
for the above control problem are provided in (Kumar and Garg,
2001).
Formalizing the previous discussion, the disablement of events
by R increases the probability of the enabled ones. In other
words,R/H generates another p-language, in general, different
than the p-language of H . Given a state x ∈ XH , a state
y ∈ XR, and an event σ ∈ ΓH(x) ∩ ΓR(y), the probability
of σ being executed is given by the standard normalization:

Pσx,y =
PσH(x)∑

σ′∈ΓH(x)∩ΓR(y) P
σ′
H (x)

(3)

We define Mn = H||pR as the PFA that describes the be-
havior of R/H , where ||p is defined based on Equation (3)
and the standard parallel composition || (see (Cassandras and
Lafortune, 2008)). Formally, Mn = (XMn ,Σ, PMn , x0,Mn) is
defined by XMn ⊆ XH × XR, x0,Mn = (x0,H , x0,R), and
for x = (x1, x2), y = (y1, y2) ∈ XH × XR and σ ∈ Σ the
transition probability is:

PMn
(x, σ, y) =

 Pσx1,x2
if δH(x1, σ) = y1∧
δR(x2, σ) = y2

0 otherwise
(4)

For simplicity and without loss of generality, we assume that
the plant H has one critical state, denoted xcrit ∈ XH and
supervisor R ensures that this state is not reachable in R/H .
We define the set of unsafe strings as Lcrit = {s ∈ Σ∗ |
PH(x0,H , s, xcrit) > 0}.
Example 1. We assume that two vehicles are traveling in the
same direction on an infinite road as shown in Fig. 1(a). The
vehicle in front is assumed to be manually driven while the

2

vehicle behind is assumed to be autonomous. Instead of their
exact position on the road, we represent their state by their
relative position, i.e., the difference of their exact positions.
The vehicles could either stay in their positions, events s1 and
s2, or move to an adjacent position, events m1 and m2. For
simplicity, we assume that once the relative distance is greater
than or equal to three, or equal to zero the experiment ends.
Figure 1(b) models this problem as a PFA, where the events of
the autonomous vehicle are controllable, Σc = {s1,m1}, the
probability transition function is encoded in the transition arcs
and the name of the states is the relative distance between the
vehicles.

Relative distance = 2 Infinite road

Autonomous

Vehicle

(a) Problem description

0 2 3

, 0.1, 0.1

, 0.4
, 0.4

, 0.1

, 0.1

, 0.4
, 0.4

(b) Model of the autonomous vehicle problem

Fig. 1. Simplified autonomous vehicle example

The goal of the autonomous vehicle is to avoid crashing into
the front car, i.e., state 0 is critical. The corresponding DFA of
the model in Fig. 1(b) without state 0 provides the supremal su-
pervisor for this problem. The closed-loop controlled behavior
Mn is shown in Fig. 2.

1 2 3

, 0.11...

, 0.44...
, 0.44...

, 0.1

, 0.1

, 0.4
, 0.4

Fig. 2. The controlled system Mn

3. ATTACKED SYSTEM DESCRIPTION

3.1 Notation

We define Σa ⊆ Σ as the set of compromised events, i.e., the at-
tacker can insert/delete events in this set on the communication
channel. We use subscripts to identify attacker modifications;
the sets Σi = {ei | e ∈ Σa} and Σd = {ed | e ∈ Σa}
are the sets of inserted and deleted events, respectively. Events
without subscripts are legitimate events generated by the plant
H , whereas events with subscripts are events altered by the
attacker. For convenience, let Σe = Σi ∪ Σd be the editable
event set and Σm = Σ ∪ Σe the complete event set.
The maskM : Σm → Σ removes the subscripts from events in
Σe, i.e.,M(ed) = M(ei) = e. Let ΠH (ΠR) be a projection
operator that projects events in Σm to events in Σ generated by
the plant (observed by the supervisor). Namely, ΠH outputs the
event that is executed in H , i.e., ΠH(ei) = ε and ΠH(ed) =
ΠH(e) = e. On the other hand, ΠR outputs the event observed
by the supervisor, i.e, ΠR(ed) = ε and ΠR(ei) = ΠR(e) = e.
Lastly, strings sH = ΠH(s) and sR = ΠR(s) are the plant
projection and the supervisor projection of string s ∈ Σ∗m.

3.2 Attacked controlled systems

In this work, sensor deception attacks are considered, where
an attacker hijacks a subset of the sensors and modifies them
in order to reach a specific goal. Similarly as in (Meira-Góes
et al., 2019b), we assume that an attacker is modeled as a
deterministic attack function fA : Σm → Σ∗m with constraints
based on the set of compromised events Σa (Meira-Góes et al.,
2019b). For simplicity and without loss of generality, we as-
sume that an attack function is given as an automaton A =
(XA,Σm, δA, x0,A); for more details on the definition of the
attack function see (Meira-Góes et al., 2019a,b). Intuitively,
the attacker observes events from the plant and remembers its
previous modifications to decide the modified string it will send
to the supervisor.
The presence of a general sensor deception attacker defined by
A disturbs the nominal behavior of controlled system. In fact, a
new controlled system, denoted as attacked system, is produced
in the presence of an attacker. We review the definition of this
attacked system. First, we need to modify automata H and R
so that they include attack actions.
Definition 1. GivenH and Σa, we define the attacked plantHa

as: Ha = (XHa
,Σm, PHa

, x0,Ha
)

1: XHa
= XH

2: Σm

3: P
(x,e,y)
Ha

=

P

(x,e,y)
H if e ∈ Σ and δH(x, e) = y

1 if e ∈ Σi and x = y

P
(x,M(e),y)
H if e ∈ Σd and

δH(x,M(e)) = y
undefined otherwise

where x, y ∈ XHa and e ∈ Σm
4: x0,Ha = x0,H

Note that, Ha violates
∑
e∈Σm

P eHa
(x) = 1 for any x ∈ XHa

since we introduce the insertion events with probability one
and deletion events with the same probability as their legitimate
events. Nonetheless, we do not analyze Ha by itself as it is just
an intermediate step.
Similarly to the construction of Ha, we modify the behavior
of R to reflect the modifications made by an attacker on
the communication channel. We assume that R respects the
controllability condition (Cassandras and Lafortune, 2008).
Definition 2. Given R and Σa, we define the attacked supervi-
sor Ra = (XRa

,Σm, δRa
, x0,Ra

) as:

1: XRa
= XR

2: Σm

3: δRa
(x, e) =

δR(x, e) if e ∈ Σ and δR(x, e)!
x if e ∈ Σd and δR(x,M(e))!
δR(x,M(e)) if e ∈ Σi and δR(x,M(e))!
undefined otherwise

where x ∈ XRa and e ∈ Σm
4: x0,Ra = x0,R

Based on Ha, Ra and A, we define the attacked system as
Ma = Ha||p(Ra||A). We used the parentheses with (Ra||A) to
remind that A and R generate a new supervisor that supervises
Ha. The PFA Ma defines the language of the attacked system
in Σ∗m, i.e., with the subscripts for each attacker modification.
For convenience, we define:
Xcrit,a = {x ∈ XMa | ∃s ∈ L(Ma) s.t. xcrit = δGa(x0,Ga , s)}
Remark 1: Although it could be that the attacker acts as a
supervisor in the composition Ha||p(Ra||A), we only consider

3

attackers A that respect controllability whenever the attacker
does not make an insertion. When an attacker inserts an event,
it is assumed that the attacker acts faster than the plant, i.e.,
the plant is “blocked” to execute events during this short period
of “time”. On the other hand, the attacker does not disable any
plant event when it does not insert an event. It is easy to check if
an attacker satisfies these conditions (Meira-Góes et al., 2019b).

Remark 2: The PFA Ma is versatile since two useful languages
other than L(Ma) are easily extracted from it. Namely, the
attacked language executed by H is obtained by ΠH(L(Ha

||p(Ra||A))) while the language seen by the supervisor is
obtained by ΠR(L(Ha||p(Ra||A))).

In (Meira-Góes et al., 2019b), the notion of winning level of an
attackerA is defined to be the probability thatMa generates un-
safe strings. Namely, winA =

∑
s∈L̃crit,a

Lp(Ma)(s) 2 , where
Lcrit,a = {s ∈ Σ∗m|δMa

(x0,Ma
, s) ∈ Xcrit,a}. Moreover,

an optimal attack function Aopt, one with the largest winA,
exists, is realizable, and is deterministic and memoryless. We
call an attacker that implements an optimal attack function as
an optimal reachability attacker.

In this paper, we focus on investigating the detection of these
optimal strategies. In other words, the attacker might leave a
probabilistic trace in order to achieve an optimal result. This
trace could be used to detect if the controlled system is under
attack.

Example 2. Back to our running example, we assume that
an attacker manipulates events Σa = {s2,m2}. Figure 3(a)
illustrates an optimal reachability attack strategy, where the
attacker simply inserts event m2 when the relative distance
between the vehicles is 1. The attacked system Ma is depicted
in Fig. 3(b) and using the results in (Meira-Góes et al., 2019b),
we get that winAopt = 0.5.

A B

(a) Optimal reachability attacker Aopt for Mn

0 1' 1 2 3

(b) Attacked system Ma

Fig. 3. Optimal attack strategy and attacked system

4. PROBABILISTIC INTRUSION DETECTION PROBLEM

4.1 Intuition on the problem formulation

In (Meira-Góes et al., 2019b), an attacker is detected when the
attacked system generates a string with a supervisor projection
outside of L(Mn). In fact, the detection modules defined in
(Lima et al., 2019) and (Carvalho et al., 2018) only detect
these strings. Nonetheless, strings that reach the critical state
and whose ΠR projection belongs to L(Mn) are undetectable
by these detection modules. Our objective is to use the proba-
bilistic information about these strings, that previously was not
leveraged, to provide more information to detection modules.
2 The set L̃crit,a exactly contains independent measurable elements of
Lcrit,a.

Let us revisit Example 2 to provide more intuition on our
goal. The shortest string that reaches the critical state in the
attacked system is m1m2im1. However, if we want to detect
and prevent a successful attack, we must detect before it reaches
the critical state. In this case, string s = m1m2i is the shortest
string where the attack can be mitigated since we can disable
m1 after detection at this point. The supervisor projection of
s is sR = ΠR(s) = m1m2 meanwhile its plant projection
sH = ΠH(s) = m1. Thus, the supervisor observes string sR
while the plant executes string sH . There are two options once
string sR is observed: it was genuinely generated by Mn or
it was crafted by Ma. It is impossible to disambiguate these
choices by only using string observation.
Let us compare the likelihood of sR being generated in Mn

with the likelihood of s being generated in Ma. The string sR
is generated by Mn with probability 0.1 ∗ 0.1̄ = 0.01̄, while s
is generated by Ma with probability 0.1 ∗ 1 = 0.1. Thus, string
s is 90% more likely to be generated than sR, which means
that it is more likely that Ma generated string s once string
sR is observed. This information can be used to disambiguate
these strings. An intrusion detection module can make better
decisions based on this new information.
In the next section, we introduce the notion of ε-safe systems
which is related to the likelihood of system Ma being the
generator of the aforementioned ambiguous strings. Intuitively,
ε-safe systems are those with every ambiguous string being
more likely to be generated by the attacked system Ma.

4.2 ε-safe systems

As was mentioned before, the intuition behind ε-safe systems
is based on comparing the probability of generating a string
before it reaches the critical state in Ma and the probability
of its supervisor projection being generated in Mn. These
two strings have the same observation and are considered
ambiguous but it is possible that one is more likely to be
generated than the other.
Similar as in the definition of safe-controllability (Paoli et al.,
2011) and NA-safe-controlabillity (Lima et al., 2019), we say
a state is a detection state if from this state the critical state
is reachable by a string with uncontrollable events and one
controllable event. We denote byXdet as the set of all detection
states in Ma. Formally, Xdet = {x ∈ XMa

| ∃s ∈ (Σd ∪
Σ)Σ∗m s.t. δMa

(x, s) ∈ Xcrit,a ∧ΠH(s) ∈ ΣcΣ
∗
uc}.

Second, let Ldet = {s ∈ L(Ma)|(sR ∈ L(Mn)) ∧
(δMa(x0,Ma , s) ∈ Xdet) ∧ (δMa(x0,Ma , s

i) 6∈ Xdet, i < |s|)}
be the set of ambiguous strings, i.e., strings in Ma that reach a
state in the detection state set and whose supervisor projection
is in Mn. Note that, Ldet does not consider strings after a state
in Xdet is reached. In our running example, Xdet = { 1′} and
Ldet = {m1m2i, s1m1m2i, s2m1m2i, . . . }.
Definition 3. Given the two systems Mn and Ma and a fixed
ε ∈ (0.5, 1], the system Mn is denoted as ε-safe with respect to
an optimal reachability attacker if ∀s ∈ Ldet, then

Lp(Ma)(s)

Lp(Mn)(sR) + Lp(Ma)(s)
≥ ε (5)

Definition 3 states that given an ambiguous string, the like-
lihood that this string is executed by Ma compared to the
likelihood of its supervisor projection being executed by Mn is
greater than ε. If we choose an ε value andMn is ε-safe, then by
observing an ambiguous string it is more likely, with at least ε

4

confidence, that the attacked system generated this string. This
definition was inspired by the maximum a posteriori probability
(MAP) estimate.
It is important to note the similarity and the differences between
our work and the work of fault diagnosis. In fault diagnosis of
a logical system, the fault detector should be able to identify
with certainty one that an observed string belongs to the faulty
behavior. In the case of a probabilistic system, the notion of
A-diagnosability states that in the limit the detector is able to
identify the faulty behavior again with certainty one (Thorsley
and Teneketzis, 2005; Bertrand et al., 2014; Yin et al., 2019).
The notion of AA-diagnosability states that in the limit the fail-
ure event is included in the observed behavior with probability
one but the failure detection decision is not made with certainty
(Thorsley and Teneketzis, 2005; Bertrand et al., 2014; Yin et al.,
2019).
Our definition of ε-safety does not distinguish the ambiguous
strings with certainty one as in the case of diagnosability and
A-diagnosability, nor distinguish these strings with an arbitrary
small uncertainty as in the case of AA-diagnosability. It has
a fixed parameter ε that defines the certainty level of the
disambiguation of strings. The higher this parameter is the more
certain the disambiguation becomes, e.g., when ε = 1, we fall
back into the intrusion detection of a logical system, which
coincides with the definition of logical diagnosability.
Based on Definition 3, we state two verification problems.
Problem 1. Given a controlled system Mn and the set of com-
promised events Σa, verify if Mn is ε-safe w.r.t. an optimal
reachability attacker.

Another problem is to find is the largest ε, if one exists, such
that the controlled system Mn is ε-safe.
Problem 2. Given a controlled system Mn and the set of com-
promised events Σa, find, if it exists, ε∗ = inf{ε ∈ (0.5, 1] |
Mn is ε-safe}.

5. SOLUTION METHODOLOGY

5.1 The verifier and solution intuition

Only strings in Ldet are of interest, i.e., strings whose supervi-
sor projections are in L(Mn) and that reach a detection state.
We would like to construct an apparatus where these strings are
easily manipulated. For this reason, we first construct the DFA
T that captures strings in L(Mn) ∩ΠR(L(Ma)).
Definition 4. Let T be the DFA that generates ΠR(L(T)) =
L(Mn) ∩ ΠR(L(Ma)). Namely, the states XT ∈ XMn ×
XMa , x0,T = (x0,Mn , x0,Ma) and δT ((x1, x2), e) = (y1, y2)
if δMn

(x1,Π
R(e)) = y1 and δMa

(x2, e) = y2 for e ∈ Σm
and (x1, x2), (y1, y2) ∈ XMn

× XMa
with x2 6∈ Xdet. The

marked states of T are XT,m = {(x1, x2) ∈ XT | ∃s ∈
L(T) s.t. δT (x0,T , s) = (x1, x2), x2 ∈ Xdet}.

Note that, the marked states of T are related to the set Ldet. The
following lemma states this relationship.
Lemma 1. Lm(T) = Ldet.

Proof: It follows from the construction of T . �

Based on T , we define the verifier V that captures string
executions of Ldet in both Mn and Ma.
Definition 5. Based on CoAc(T), we define the verifier V =
(XV ,Σm, PV , x0,V , XV,m). We have XV = XCoAc(T), Σm is

the complete set of events, PV : XV × Σm × XV → [0, 1]2,
x0,V = x0,T and XV,m = XT,m. The transition probability
function PV is defined as for x = (x1, x2), y = (y1, y2) ∈
XV :

PV (x, e, y) =

[
PMn(x1,Π

R(e), y1)
PMa(x2, e, y2)

]
if δCoAc(T)(x, e) = y

undefined otherwise

Although the verifier V is not a PFA since PV is defined
differently, we apply definitions for PFA to the verifier V , e.g.,
L(V). In this manner, we state the following lemma.
Lemma 2. Lm(V) = Lm(T) and L(V) = pre(Lm(V)).

Proof: It follows from the construction of V and Lemma 1. �

Given x = (x1, x2), y = (y1, y2) ∈ XV and e ∈ Σm, the
first element of the vector PV (x, e, y) denotes the probability
of generating ΠR(e) in Mn from state x1 ∈ Mn to state
y1 ∈ Mn. The second element of PV (x, e, y) denotes the
probability of generating event e in Ma from state x2 ∈ Ma

to state y2 ∈ Ma. Let x1s[1]x2s[2] . . . s[|s|]x|s|+1 be the sub-
run in V generated by s ∈ Σ∗m starting in state x1. We define
the vector P s,x1

V = PV (x1, s[1], x2)�PV (x2, s[2], x3)�· · ·�
PV (x|s|, s[|s|], x|s|+1), where � is the entry-wise product of
vectors. When x1 = x0,V , we use P sV = P

s,x0,V

V .
We are now ready to state our main theorem on the verification
of ε-safe systems.
Theorem 3. A system is ε-safe if and only if

inf
s∈Lm(V)

{
P sV [2]

P sV [1] + P sV [2]

}
≥ ε.

Proof: The proof follows from the Definition 3, Lemma 2,
Lp(Mn)(sR) = P sV [1], and Lp(Ma)(s) = P sV [2]. �

What remains to be shown is the existence of an algorithm
that checks the aforementioned condition. For that reason, we
consider two cases:
(1) The set Ldet has a finite number of strings. As a conse-

quence, computing the ratio
P sV [2]

P sV [1] + P sV [2]

for all s ∈ Ldet can be completed in finite time. Moreover,
based on Lemma 2,Ldet has finite number of strings if and
only if V is an acyclic directed graph.

(2) The set Ldet has an infinite number of strings, which
implies that V is cyclic. In this case, we cannot apply
Theorem 3 directly as a test. We need to find another
method for this case.

Next, we provide methods for both cases: acyclic and cyclic
verifier V . Fortunately, these two cases are connected and the
method used for an acyclic verifier is a special case of the
general method for a cyclic verifier. Nonetheless, we present
these two methods sequentially for readability purposes.

5.2 Acyclic verifier

Again, the set Ldet has finitely many strings if and only if V
is acyclic. There exists different algorithms to check if V is
acyclic, e.g., Depth-First-Search, Tarjan’s strongly connected
components algorithm, etc. (Bang-Jensen and Gutin, 2008). We
assume that the acyclicity of V has been confirmed and present
Algorithm 1 to verify ε-safety. This algorithm simply checks
each marked string in V individually for ε-safety.

5

Algorithm 1 Verification of ε-safe for finite Ldet
Input: V and ε
Output: ε-safety or not ε-safe

1: function ACYCLIC VERIFIER(V, ε)
2: for all s ∈ Lm(V) do
3: Compute P sV
4: if P s

V [2]
P s

V
[1]+P s

V
[2] < ε then

5: return Not ε-safe
6: end if
7: end for
8: return ε-safe
9: end function

We omit the proof of correctness of Algorithm 1 since it follows
directly from Theorem 3 and the fact that V is acyclic.

5.3 Cyclic verifier

Although Theorem 3 holds when V is cyclic, the set of strings
to be verified is infinite. Therefore, Algorithm 1 is a pseudo-
algorithm since it does not terminate. Nevertheless, we will
show that we can use the result for acyclic verifiers to handle
the case of cyclic verifiers. Namely, we decompose the cyclic
verifier into an acyclic verifier Vac and a finite set of cycles C.
Intuitively, we directly apply Algorithm 1 to Vac. Algorithm 1
tests the ε-safety condition on Vac but it is not sufficient to
determine if V is ε-safe. To complete the test for V , we verify
the set of cycles C in a similar manner as Vac.
Proposition 4 provides the result on the existence of such
decomposition.
Proposition 4. (Sect.1, pp-39 (Bang-Jensen and Gutin, 2008))
In a directed graph, every open walk (vertex can repeat) can be
decomposed as a simple path (no repeated vertex) and simple
cycles.

Proposition 4 is easily extended to DFA, where walks, paths and
cycles are defined over runs and sub-runs x1s[1] . . . x|s|s[|s|]
x|s|+1.
We define Vac as the acyclic part of V , i.e., one can think of
Vac as a rooted tree with x0,V as the root and states of XV,m as
leaves. Namely, Vac generates the marked languageLm(Vac) =
{s ∈ Lm(V) | ∃ a run x1s[1]x2s[2] . . . s[|s|]x|s|+1, x1 =
x0,V and xi 6= xj ∀i 6= j}. In this manner, Algorithm 1 can be
directly applied to Vac. Nonetheless, we only have a necessary
condition since Lm(Vac) ⊆ Ldet.
Next, we define C to be the set of all simple cycles in
V , i.e., C = {x = x1s[1] . . . s[|s|]x1 ∈ (XV Σm)∗ |
x is a sub-run in V and xi 6= xj , i 6= j ∈ [|s|]+}}. This set can
be obtained by algorithms that find simple cycles in directed
graphs, e.g., Johnson’s algorithm (Mateti and Deo, 1976). The
following theorem provides necessary and sufficient conditions
to test ε-safety condition based on the constructed verifier V .
Theorem 5. Given the verifier V , the systemMn is ε-safe if and
only if:
(1) The acyclic part of V denoted as Vac is ε-safe; and
(2) For all (x1s[1] . . . s[|s|]x1) ∈ C, P s,x1

V [2] ≥ P s,x1

V [1]

Proof: We start by the only if part by assuming that Mn is
ε-safe. The first condition is immediate since Lm(Vac) ⊆
Ldet. We show the second condition by contradiction. As-
sume that there exists c = y1t[1]y2 . . . y|t|t[|t|]y1 ∈ C such

that P t,y1V [1] > P t,y1V [2]. By Lemma 2 and the Pumping
Lemma, there exists a run x1s[1]x[2] . . . xks[k]cns[k + n|t| +
1]xk+n|t|+1 . . . s[|s|]x|s|+1, where x1 = x0,V , s = s1t

ns2 =
s[1] . . . s[k]tns[k + n|t|+ 1] . . . s[|s|] ∈ Lm(V) and cn means
that the cycle sub-run is repeated n times. Since s1t

ns2 ∈
Lm(V) and Mn is ε-safe:

P s1t
ns2

V [2]

P s1t
ns2

V [1] + P s1t
ns2

V [2]
≥ ε (6)

P s1t
ns2

V [2]

P s1t
ns2

V [1]
≥ ε

1− ε
(7)

Equation (7) is true for any n ∈ N. We can rewrite P s1t
ns2

V [i] =

P s1s2V [i]P t
n,y1
V [i], i ∈ {1, 2}. From our assumption, P

t,y1
V

[2]

P
t,y1
V

[1]
<

1. Thus, ∃n0 ∈ N such that:

P s1s2V [2]

P s1s2V [1]

(
P t,y1V [2]

P t
,y1
V [1]

)n0

<
ε

1− ε
(8)

It contradicts Equation (7) and the fact that Mn is ε-safe.

We move to the if part of the proof. It is assumed that con-
ditions (1) and (2) are satisfied. Again Proposition 4 and
Lemma 2 let us write any string s ∈ Ldet that generates
the run x1s[1] . . . s[|s|]x|s|+1 as c1t[1]c2t[2] . . . c|t|t[|t|]x|t|+1

where t ∈ Lm(Vac), x1 = x0,V , and ci is a closed-run (starting
and ending in xi) or ci = xi (no cyclic sub-run). The closed-
run ci is a composition of the simple cycles c1i , . . . , c

ki
i with

cji = yij1 tij [1]yij2 . . . tij [|tij |]yij1 ∈ C. This composition means
that these simple cycles are used in some way, not necessarily
sequentially, to construct ci. Since t ∈ Lm(Vac), we have that

P t,x1

V [2]

P t,x1

V [1]
≥ ε

1− ε
(Condition (1))

and

P
tij ,y

ij
1

V [2]

P
tij ,y

ij
1

V [1]
≥ 1 (Condition (2))

for every i ∈ [|t|]+ and j ∈ [ki]
+. As a consequence, we can

group t with the composition of simple cycles to produce s and
obtain

P sV [2]

P sV [1]
≥ ε

1− ε
That concludes our proof. �

Theorem 5 shows that Problem 1 and Problem 2 are decidable
since the sets Lm(Vac) and C are finite sets. Similar to Al-
gorithm 1, we provide a general algorithm to verify the ε-safe
condition of Mn.

The proof of correctness of Algorithm 2 follows directly from
Theorem 5. Note that, Algorithm 2 has exponential complexity
since both the number of finite strings in the marked language
of Vac and the number of cycles in C are exponential in the
number of states in V .

Example 3. We return to our running example and verify if the
controlled system Mn depicted in Fig. 2 is 0.9-safe w.r.t. the
attacked system Ma illustrated in Fig. 3(b). We construct the
verifier V , shown in Fig. 4. The acyclic verifier Vac generates
a marked language Lm(Vac) = {m1m2i}. We see that Vac
is 0.9-safe. Next, the set of all single cycles in V is C =
{(2, 2)s1(2, 2), (2, 2)s2(2, 2)}. It follows that condition (2) of
Theorem 5 holds. Therefore, Mn is 0.9-safe w.r.t. Ma.

6

Algorithm 2 Verification of ε-safety for arbitrary Ldet
Input: V and ε
Output: ε-safe or not ε-safe

1: Compute Vac and C from V
2: if Not ε-safe = ACYCLIC VERIFIER(Va, ε) then
3: return Not ε-safe
4: end if
5: for all c = x1s[1] . . . s[|s|]x|s|+1 ∈ C do
6: Compute P s,x1

V
7: if P s,x1

V [2] < P s,x1

V [1] then
8: return Not ε-safe
9: end if

10: end for
11: return ε-safe

2,1' 1,1 2,2

Fig. 4. Verifier V

6. CONCLUSION

We have considered the problem of detection of sensor de-
ception attacks in the context of stochastic supervisory control
theory. The notion of ε-safe systems is introduced as a first step
to obtain quantitative measurements to help intrusion detection
modules. These modules can use this information to reason
about strings that are considered undetectable when only quali-
tative reasoning is used. Necessary and sufficient conditions to
test ε-safety are presented. Furthermore, an algorithm is pro-
vided to test these conditions which shows that verification of
ε-safety is decidable. The algorithms to test ε-safety presented
in this paper are in the worst case exponential in time.

The presented definition of ε-safety is parameterized by a
specific attack strategy. It would be of interest to consider
a more general definition parameterized by a class of attack
strategies (e.g., deterministic attack strategies). Moreover, it
would be of interest to soften the ε-safety condition.

REFERENCES

Bang-Jensen, J. and Gutin, G.Z. (2008). Digraphs: Theory,
Algorithms and Applications. Springer Publishing Company,
Incorporated, 2nd edition.

Bertrand, N., Haddad, S., and Lefaucheux, E. (2014). Founda-
tion of Diagnosis and Predictability in Probabilistic Systems.
In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 29,
417–429. New Delhi, India.

Cardenas, A.A., Amin, S., and Sastry, S. (2008). Secure con-
trol: Towards survivable cyber-physical systems. In 2008
The 28th International Conference on Distributed Comput-
ing Systems Workshops, 495–500.

Carvalho, L.K., Wu, Y.C., Kwong, R., and Lafortune, S. (2018).
Detection and mitigation of classes of attacks in supervisory
control systems. Automatica, 97, 121 – 133.

Cassandras, C.G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2 edition.

Garg, V.K., Kumar, R., and Marcus, S.I. (1999). A probabilistic
language formalism for stochastic discrete-event systems.
IEEE Transactions on Automatic Control, 44(2), 280–293.

Kumar, R. and Garg, V.K. (2001). Control of stochastic discrete
event systems modeled by probabilistic languages. IEEE
Transactions on Automatic Control, 46(4), 593–606.

Lawford, M. and Wonham, W.M. (1993). Supervisory control
of probabilistic discrete event systems. In Proceedings of
36th Midwest Symposium on Circuits and Systems, 327–331.

Lima, P.M., Alves, M.V.S., Carvalho, L.K., and Moreira, M.V.
(2019). Security against communication network attacks of
cyber-physical systems. Journal of Control, Automation and
Electrical Systems, 30(1), 125–135.

Mateti, P. and Deo, N. (1976). On algorithms for enumerating
all circuits of a graph. SIAM J. Comput., 5, 90–99.

Meira-Góes, R., Kang, E., Kwong, R., and Lafortune, S. (2017).
Stealthy deception attacks for cyber-physical systems. In
2017 IEEE 56th Annual Conference on Decision and Control
(CDC), 4224–4230.

Meira-Góes, R., Kang, E., Kwong, R., and Lafortune, S.
(2019a). Synthesis of sensor deception attacks at the super-
visory layer of cyber-physical systems. under review.

Meira-Góes, R., Kwong, R., and Lafortune, S. (2019b). Syn-
thesis of sensor deception attacks for systems modeled as
probabilistic automata. In 2019 American Control Confer-
ence (ACC).

Meira-Góes, R., Marchand, H., and Lafortune, S. (2019c). To-
wards resilient supervisors against sensor deception attacks.
In To appear at 2019 IEEE 58th Annual Conference on De-
cision and Control (CDC).

Pantelic, V., Lawford, M., and Postma, S. (2014). A framework
for supervisory control of probabilistic discrete event sys-
tems. 12th IFAC International Workshop on Discrete Event
Systems (WODES), 47(2), 477 – 484.

Paoli, A., Sartini, M., and Lafortune, S. (2011). Active fault
tolerant control of discrete event systems using online diag-
nostics. Automatica, 47(4), 639–649.

Rashidinejad, A., Wetzels, B., Reniers, M., Lin, L., Zhu, Y.,
and Su, R. (2019). Supervisory control of discrete-event
systems under attacks: An overview and outlook. In 2019
18th European Control Conference (ECC), 1732–1739.

Su, R. (2018). Supervisor synthesis to thwart cyber attack with
bounded sensor reading alterations. Automatica, 94, 35 – 44.

Teixeira, A., Pérez, D., Sandberg, H., and Johansson, K.H.
(2012). Attack models and scenarios for networked control
systems. In Proceedings of the 1st International Conference
on High Confidence Networked Systems, HiCoNS ’12, 55–
64. ACM, New York, NY, USA.

Thorsley, D. and Teneketzis, D. (2005). Diagnosability of
stochastic discrete-event systems. IEEE Transactions on
Automatic Control, 50(4), 476–492.

Thorsley, D. and Teneketzis, D. (2006). Intrusion detection in
controlled discrete event systems. In Proceedings of the 45th
IEEE Conference on Decision and Control, 6047–6054.

Wang, Z., Meira-Góes, R., Lafortune, S., and Kwong, R.
(2020). Mitigation of classes of attacks using a probabilistic
discrete event system framework. In 15th IFAC Workshop on
Discrete Event Systems WODES 2020 (to appear).

Yin, X., Chen, J., Li, Z., and Li, S. (2019). Robust fault diagno-
sis of stochastic discrete event systems. IEEE Transactions
on Automatic Control, 64, 4237–4244.

7

