
Towards resilient supervisors against sensor deception attacks

Rômulo Meira-Góes, Hervé Marchand and Stéphane Lafortune

Abstract— We consider feedback control systems where sen-
sor readings may be compromised by a malicious attacker
intent on causing damage to the system. We study this problem
at the supervisory layer of the control system, using discrete
event systems techniques. We assume that the attacker can edit
the outputs from the sensors of the system before they reach
the supervisory controller. In this context, we formulate the
problem of synthesizing a supervisor that is robust against a
large class of edit attacks on the sensor readings. We solve this
problem using a new methodology that improves upon prior
work on this topic. The solution methodology is based on the
solution of a partially observed supervisory control problem
with arbitrary control patterns. We also provide results on the
existence of a supremal robust supervisor.

I. INTRODUCTION

Security concerns are a subject of increasing attention in
the control community, e.g., see [1], [15]. It was only recently
that security aspects started to be incorporated into the de-
sign of feedback control systems. Hence, understanding and
designing feedback control systems that are robust against
attacks is of critical importance nowadays.

In this paper, we assume that the underlying uncontrolled
system has been abstracted as a discrete transition system
(the plant in this work), where sensor outputs belong to a
finite set of (observable) events. A high-level supervisory
controller, or simply supervisor, driven by the observable
events controls the behavior of the plant via actuator com-
mands. Based on this event-driven model, we incorporate
a malicious attacker that hijacks a subset of the observable
events and feeds the supervisor with incorrect information
about the plant; this type of attack is known as sensor
deception attack [10]. The goal of the attacker is to leverage
its knowledge of the plant model and of the control actions
of the supervisor and to use its event-editing capabilities to
steer the plant state to a critical state where damage to the
plant would occur. In contrast to the objective of the attacker,
the goal of the supervisor is to prevent any attacker with
event-editing capabilities to cause damage to the plant. We
study the design of feedback control systems that are robust
against sensor deception attacks at the supervisory layer of
a feedback control system.

Prior work on sensor deception attacks in the field of
Discrete Event Systems (DES) mainly focuses on designing
attack strategies for fixed supervisors [9], [13], [10], [11] or
focuses on designing intrusion detection modules for fixed

R.M.G. and S.L. are with the Department of EECS, University of
Michigan, USA. Their work was supported by US NSF grant CNS-1738103.
H. M. is with INRIA, Centre Rennes - Bretagne Atlantique, 35042, France
(e-mail:herve.marchand@inria.fr).

supervisors [2], [7]. Exceptions to that are the works in [16],
[13]. It is also relevant to mention the work in actuation de-
ception attacks in [8], [18], even though a different deception
attack class is investigated in these works.

The recent works of [16], [13] studied synthesis of robust
supervisors against deception attacks. In [16], the authors
provide necessary and sufficient conditions for the existence
of a supervisor that exactly achieves a specification under
sensor deception attacks. On the other hand, the results
in [13] shows how to synthesize for a given specification
the supervisor that generates the supremal controllable and
normal sublanguage robust against bounded sensor deception
attacks. The methodology in [13] has triple exponential
complexity, in the worst case, in the size of the system model.
In this paper, we provide a computationally more efficient
method, namely single exponential, to solve the problem of
synthesis of a robust supervisor against unbounded sensor
deception attacks. Another difference between [13] and this
paper is the way the (observable) events are processed by
the supervisor when a string is inserted: one at time in this
paper but the string as a whole in [13].

Our solution methodology comprises two steps and em-
ploys techniques from supervisory control of partially-
observed discrete event systems. In the first step, we build
an augmented plant, called attacked plant, to capture the
interaction of the attacker under the constraints of the plant
model. The attacked plant can be built in a manner that
accounts for all possible attacks or can be based on a
known attack model. The attacked plant captures at the
same time the execution of events in the original plant and
the information received by the supervisor. The second step
poses a supervisory control problem for the attacked plant
under the specification that states that cause damage to the
plant should never be reached. Specifically, this supervisory
control problem becomes an instance of supervisory control
with arbitrary control patterns under partial observation, for
which the existing theory of supervisory control of discrete
event systems is leveraged [4], [6], [14]. We show that the
solution of the supervisory control problem for the attacked
plant provides a solution for the problem addressed in this
paper.

The paper is organized as follows. Section II introduces
necessary background used throughout the paper. The frame-
work of supervisory control theory under sensor deception
attacks and the synthesis of robust supervisors problem are
presented in Section III. In Section IV, we provide the
solution methodology for the studied problem and discuss
its correctness. We conclude the paper in Section V. Proofs
are omitted due to space limitations.

II. PRELIMINARIES

We a consider a discrete transition system modeled as a
finite-state automaton. A finite-state automaton G is defined
as a tuple G = (XG,Σ, δG, x0,G), where XG is a finite set
of states; Σ is a finite set of events; δG : XG × Σ → XG

is a partial transition function; and x0,G ∈ XG is the initial
state.

The function δG is extended in the usual manner to domain
X×Σ∗. The language generated by G is defined as L(G) =
{s ∈ Σ∗|δ(x0, s)!}, where ! means “is defined”. For x ∈ XG,
we define ΓG(x) = {e ∈ Σ | δG(x, e)!} as the active event
set at state x. For K ⊆ Σ∗, we denote by pr(K) as the set of
all prefixes of strings in K and K is said to be prefix-closed
if K = pr(K).

In the context of supervisory control theory of DES [12],
we consider an uncontrolled system (plant) G that needs to
be controlled in order to satisfy given safety specifications.
In order to control G, the event set Σ is partitioned into
two disjoint sets, which are the set of controllable events
Σc and the set of uncontrollable events Σuc. The safety
specifications on G are enforced by a supervisor, denoted
by SP , that dynamically enables/disables controllable events.
The resulting controlled behavior is a new DES denoted
by SP /G, resulting in the closed-loop language L(SP /G),
defined in the usual manner (see, e.g., [3], [17]).

In addition, when the system is partially observed due
to the limited sensing capabilities of G, the event set is
also partitioned into Σ = Σo ∪ Σuo, where Σo is the set
of observable events and Σuo is the set of unobservable
events. Based on this second partition, the projection function
Po : Σ∗ → Σ∗o is recursively defined as: Po(ε) = ε,
P (se) = P (s)e if e ∈ Σo, and P (se) = P (s) otherwise.
The inverse projection P−1

o : Σ∗o → 2Σ∗
is defined as

P−1
o (t) = {s ∈ Σ∗|P (s) = t}.
Supervisor SP makes its control decisions based on a

string of observable events. Formally, a partially observation
supervisor is a (partial) function SP : Po(L(G))→ Γ, where
Γ = {γ ∈ 2Σ : Σuc ⊆ γ}.

In this paper, we need to leverage the partially observed
supervisory control problem with arbitrary control patterns
(SCP-AP) studied in [4], [6], [14]. In this problem, the
supervisor SP is defined based on an arbitrary set C ⊆ Γ,
i.e., SP : Po(L(G))→ C. Now, we recall a result from [14].

Proposition II.1. [14] Let K ⊆ L(G) be a non-empty and
prefix-closed language and let C ⊆ Γ be the available control
patterns set. There exists a supervisor SP : Po(L(G)) →
C such that L(SP /G) = K if and only if K satisfies the
following condition: for any s ∈ K and t ∈ P−1

o [Po(s)] ∩
L(G), there exists a control pattern γ ∈ C such that γ ∩
ΣL(G)(t) = ΣK(t), where ΣK(s) = {e ∈ Σ | se ∈ K} is
the one event continuation of string s ∈ K.

Proposition II.1 reduces to the standard controllability and
observability conditions when C = Γ [14]. When K does
not satisfy Proposition II.1, the set CO(K) = {K ′ ⊆ L(G) |
K ′ = pr(K ′) ⊆ K s.t. K ′ satisfies Proposition II.1} is

defined. Note that, CO(K) is non-empty since ∅ ∈ CO(K).
Similarly to the standard partially observed supervisory
control problem, there does not exist in general a supremal
element in CO(K).

Without loss of generality, we assume that SP is realized
by an automaton R = (XR,Σ, δR, x0,R) (see, e.g., [3], [17]).
While the domain of events in R is Σ not Σo, its transitions
are only driven by observable events. We use both notations
SP and R interchangeably.

We complete this section by defining useful notation for
strings and with an example of supervisory control. For any
string s ∈ Σ∗, |s| denotes the length of s. We define by eis
the ith event of s such that s = e1

se
2
s . . . e

|s|
s . Finally, si is

ith substring of s, namely si = e1
s . . . e

i
s and s0 = ε.

Example II.1. We use the collision avoidance problem of
vehicles at an intersection as running example throughout
the paper. We have two roads with one car in each road
approaching an intersection as in Figure 1(a). The cars must
cross the intersection without colliding with each other, or
equivalently, both cannot be at the intersection at the same
time. This system is modeled by the automaton G shown
in Figure 1(b). Every event is controllable and observable
and C = Γ. The supervisor realization R that guarantees the
specification described can be obtained by deleting state 5.

(a) Example intersection with
two cars

(b) Model of an intersection
with two cars. Events with
B(lue) are related to car 1,
while events with R(ed) are
related to car 2.

Fig. 1: Intersection example

III. ROBUST SUPERVISORY CONTROL AGAINST SENSOR
DECEPTION ATTACKS

The left diagram of Figure 2 pictorially describes sensor
deception attacks in the supervisory control framework,
where the attacker intervenes in the communication channel
between the plant’s sensors and the supervisor. The attacker
has the ability to observe the same observable events as the
supervisor. Even more, it has the ability to alter some of
the sensor readings in this communication channel, where
“alter” means that it can insert or delete events. The subset
of affected sensor readings is defined as the compromised
event set and denoted by Σa ⊆ Σo.

We study the problem of synthesis of a supervisor that
guarantees a safe controlled behavior even in the presence of
an attacker with the previously described deceptive capabili-
ties. In other words, the goal is to synthesize a supervisor that

Fig. 2: Deception Attack Framework

is provably robust against deception attacks over the sensors
Σa.

In this work, we use an approach similar to that in [2],
[7]. The conceptual diagram of sensor deception attacks, as
shown in Figure 2, is transformed into an attacked controlled
system, which is constructed based on the original controlled
system and attacker assumptions. In this attacked controlled
system, we perform our analysis and provide guarantees
about robustness against sensor deception attacks. In the next
sections, we go over the attacker assumptions, the description
of the attacked closed-loop behavior, and formally pose the
problem we study.

A. Attack model

As was previously mentioned, the left diagram of Fig-
ure 2 pictorially describes sensor deception attacks in the
supervisory control framework. The attacker hijacks the
communication channel between the plant and the supervisor.
Intuitively, the attacker receives some information from G
and based on its capabilities it applies some strategy to attain
its goal. To formally define an attacker, we must consider
which information it receives, what are its capabilities and
what is its strategy.

First, we assume that the attacker observes the same
observable events as the supervisor. Moreover, we assume
that the attacker has full knowledge of the plant G and su-
pervisor R. This assumption is common in security analysis
of systems. In our case, it means that we are studying the
worst-case scenario.

Second, the attacker can only modify the compromised
event set Σa ⊆ Σo in order to accomplish its goal. By
modify, we mean that it can insert or delete events in Σa over
the communication channel between the plant and supervisor.

Finally, the last attacker assumption we make is related
to its strategy. First, we present a general attack strategy
that it is suitable whenever we do not have prior knowledge,
besides Σa, about the attacker. The “all-out” attack strategy
was introduced in [2], [7]. In this model, the attacker attacks
whenever it is possible. Although this model is simple, it
is well-suited to the problem we are investigating since we
want to design a supervisor that is robust against any sensor
deception attack.

On the other hand, if there exists information about
the strategy that an attacker follows, then we construct a
supervisor that is robust against this strategy (see Section III-
C). Note that, we still consider a deception attack strategy
based on Σa.

The next section discusses the closed-loop behavior of the
attacked system based on the “all-out” strategy. Next, we
discuss prior attack knowledge and how it affects the closed-
loop behavior of the attacked system.

B. Closed-loop system under deception attack

Based on the previously described attacker assumptions,
we define the behavior of the closed-loop attacked system.
For that, we first recall the model of the attacked plant Ga.
The attacked plant is defined differently than the one in [7].

We use the subscripts i and d to distinguish legitimate
events generated by G from the modified events generated
by the attacker, insertion and deletion respectively. We define
Σe

a = Σi
a ∪ Σd

a, where Σi
a = {ei | e ∈ Σa} and Σd

a =
{ed | e ∈ Σa}, to be the compromised events set with the
subscripts i and d.

In the attacked plant, the events ei simulate the insertion
ability of the attacker. The insertion events ei are self-loops
in Ga since they are fictitious events, i.e., they do not change
the state of the plant G. Every state of G is enhanced with
insertion events.

On the other hand, the events ed simulate the deletion
ability of the attacker. These events are defined in parallel
to transitions with events in Σa since an event must be
executed by G in order to delete this information from the
communication channel.

We are now ready to define the behavior of a plant G
under an attack.

Definition III.1. Given G and Σa, we define the attacked
plant Ga as: Ga = (XGa

,Σm, δGa
, x0,Ga

)

1: XGa
= XG

2: Σm = Σ ∪ Σe
a

3: δGa(x, e) =

δG(x, e) if e ∈ Σ and δG(x, e)!
x if e ∈ Σi

a

δG(x,M(e)) if e ∈ Σd
a and

δG(x,M(e))!
undefined otherwise

where x ∈ XGa , e ∈ Σm, and M : Σm → Σ removes
the subscripts of events in Σm, i.e., M(ei) =M(ed) =
e for ei, ed ∈ Σe

a and M(e) = e for e ∈ Σ
4: x0,Ga

= x0,G

Similarly to the construction of Ga, we can modify the
behavior of R to reflect the modifications made by an
attacker on the communication channel. We assume that R
respects the controllability and observability conditions.

Definition III.2. Given R and Σa, we define the attacked
supervisor Ra = (XRa

,Σm, δRa
, x0,Ra

) as:

1: XRa
= XR

2: Σm = Σ ∪ Σe
a

3: δRa
(x, e) =

δR(x, e) if e ∈ Σ and δR(x, e)!
x if e ∈ Σd

a and
δR(x,M(e))!

δR(x,M(e)) if e ∈ Σi
a and

δR(x,M(e))!
undefined otherwise

where x ∈ XRa and e ∈ Σm.
4: x0,Ra

= x0,R

The construction of Ra is similar to the construction
of Ga. However, insertion and deletion events affect the
supervisor in the opposite manner as they affect the plant.
The deletion events ed are self-loops in the states of Ra

where the legitimate events e ∈ Σa are defined. If the event is
deleted by the attacker, then it must have been enabled by the
supervisor first. They are self-loops since the supervisor does
not receive any information. On the other hand, insertion
events ei are defined in parallel to their legitimate events
e ∈ Σa. Note that, the construction of Ra creates a control
pattern Ca based on events e ∈ Σa. Formally, Ca = {γ ∈
2Σm | γ ⊆ Σuc ∧ (∀e ∈ γ ∩ Σa, ei ∈ γ ∧ ed ∈ γ)}.

Remark: Although Ra is a modification of R, this mod-
ification does not alter the control decisions taken by R.
In other words, the plant G is still supervised by the
supervisor R. Ra is defined such that it takes into account
the modifications made by the attacker.

The closed-loop system under sensor deception attacks
is captured by the parallel composition of Ga||Ra, where
|| is the parallel composition operator as in [3]. Since Ra

is a supervisor realization, the closed-loop system under
deception attacks is also denoted by Ra/Ga. The language
L(Ra/Ga) generated by this system is defined as the usual
closed-loop language of a supervised system.

The language L(Ra/Ga) still has events in Σe
a, but we

are interested in analyzing the language that is executed
in G. PG

e is a projection that treats events in Σe
a in the

following manner: PG
e (e) = ε, if e ∈ Σi

a, PG
e (e) =

M(e) otherwise. Since insertion events are not executed by
G, PG

e erases them. Deletion events are mapped to their
legitimate events (Σ), and legitimate events are unaltered.
In this manner, the closed-loop language executed by G is
defined by PG

e (L(Ra/Ga)), where the projection operation
is extended to languages in the usual manner.

C. Known attack strategy

In the previous section, we defined the attacked behavior
based on the “all-out” attack strategy. In this section, we
relax this assumption based on some prior knowledge of the
attack strategy used by an attacker. Using this knowledge,
we can build the attacked plant similarly as it was built for
the “all-out” attack strategy. Namely, we need to modify
the construction of the attacked plant Ga. However, the
construction of Ra remains the same as before.

There are different ways of describing attack strategies.
In this work, we assume that the known attack strategy is
encoded as an automaton A = (XA, δA,Σm, x0,A) as in [9].

If the automaton A encodes the attack strategy correctly,
then we can construct Ga as a composition of A and G,

i.e., Ga = A||G. In this manner, the controlled behavior of
the attacked system is defined by Ga = A||G and Ra as in
Definition III.2.

We give one example of an attack strategy to demonstrate
how Ga is constructed. We assume that the attacker can
only insert events (deletion events are not allowed) and it
inserts at most one event after an event is executed in G.
The automaton in Figure 3 encodes this attack strategy.
Composing A with G provides the attacked plant Ga.

Fig. 3: Attack strategy with bounded insertions

For the rest of the paper, we only discuss results for Ga

as defined in Definition III.1. However, these results are
also applicable to Ga constructed based on a known attack
strategy A.

D. Supervisor robust against sensor deception attacks

In this paper, we consider the dual problem of the work
in [9]; the problem of synthesizing a supervisor R such that
no attack causes damage to the plant. Therefore, we assume
that the plant G contains a set of critical states defined as
Xcrit ⊂ X; these states are unsafe in the sense that they
are states where physical damage to the plant might occur.
Although damage is defined in relation to the set Xcrit, it
could be generalized in relation to any regular language by
state space refinement. The attacker succeeds, if there exists
s ∈ PG

e (L(Ra/Ga)) such that δG(x0, s) ∈ Xcrit. In relation
to the supervisor, it succeeds if Xcrit is not reachable in the
attacked system Ra/Ga.

Definition III.3. Given G with Xcrit and R, we say that
Ra/Ga is safe if for any s ∈ PG

e (L(Ra/Ga)), then
δG(x0, s) /∈ Xcrit. In this case, R is robust against sensor
deception attacks over Σa, or simply robust.

Finally, we are able to formally pose the Synthesis of
Robust Supervisor Problem.

Problem III.1 (RSS-Robust Supervisor Synthesis). Given G
with Xcrit and Σa ⊆ Σo, synthesize a robust supervisor R,
if one exists, such that Ra/Ga is safe.

Example III.1. Let us return to our intersection example.
Let us assume that Σa = {Rint}. Using G and R as given
in Example II.1, we construct the pair Ga and Ra. Thus, we
can analyze the system Ra/Ga. The attacked system Ra/Ga

is shown in Figure 4(a). The string s = Rint,dBint, in red in
Figure 4(a), is feasible in Ra/Ga, then PG

e (s) = RintBint

is executed in G, which takes it to state 5.
Figure 4(b) demonstrates the attacked behavior for a

supervisor R′, different than R, for G. Note that, R′ is robust
since there does not exist any string that reaches the critical
state. In the next section, we show how to compute this R′.

(a) The attacked controlled
system Ra/Ga

(b) The attacked controlled
system for R′

a/Ga

Fig. 4: Closed-loop behavior of the attacked system

IV. SOLUTION TO THE ROBUST SUPERVISORY CONTROL
PROBLEM

Example III.1 shows that the supervisor designed using the
usual supervisory control theory fails to provide robustness
against deception attacks. It fails since the usual methodology
does not take into account sensor deception attacks. Our goal
is to enhance the supervisory control framework such that we
answer the RSS problem.

Inspired by the technique used in [2], the model Ga

defined in Section III becomes the system at the center of our
study. Since the attacked plant Ga captures the behavior of
plant G under a sensor deception attack over Σa, our solution
technique poses a supervisory control problem directly at the
attacked plant Ga. Although it appears that we could directly
apply standard supervisory control techniques, the events in
Σe

a prevent us to do so because we cannot assign them to the
controllable/uncontrollable and the observable/unobservable
partitions. Next, we provide a solution to this problem
starting with the controllability issue.

The controllability of events in Σe
a is directly related to

their legitimate counterparts. These events cannot be directly
controlled since an attacker decides when to attack. However,
if a compromised event e ∈ Σa is controllable, then the
supervisor can control when to disable e, which consequently
disables events ei and ed. The latter is a consequence of the
assumption that the attacker does not insert events that are
disabled at a current control decision (see Definition III.2).
Therefore, events in Σe

a depend on the decision made on their
legitimate counterparts. As mentioned in Definition III.2, this
dependence provides us the control patterns Ca that the
supervisor for Ga must follow.

The control patterns created by Σe
a solve the issue related

to controllability of events in Σe
a but they do not solve the

issue related to observability. PG
e projects attacked strings

from Ga to strings executed in G, but it does not capture how
attacked strings are perceived by the supervisor. Even though
the system Ra/Ga captures exactly the closed-loop behavior
of the attacked system, we are interested in synthesizing a
supervisor R that has Σ∗o as input. In other words, we use
Ra/Ga to test if a supervisor R with Σ∗o as input is safe.
Thus, we define PR

e : Σm → Σo as: PR
e (e) = ε, if e ∈ Σd

a;
and PR

e (e) =M(e) otherwise.
Let us analyze Ga with the projection PR

e . Recall that

Definition III.1 adds self-loops of insertions events at each
state of G. It also adds transitions with deletion events
parallel to transitions with their legitimate event. Therefore,
if we use the projection PR

e in Ga, then the insertion events
are mapped to their legitimate events and deletion events
are mapped to the empty string. This operation generates a
nondeterministic automaton, which we want to avoid. We
prefer a partially observed system to be consistent with
standard supervisory control.

We consider the following procedure to eliminate the
nondeterminism generated by PR

e and analyze strings from
Ga as they are seen by the supervisor.

Definition IV.4. Given Ga, we define Gm =
(XGm

,Σm, δGm
, x0,Gm

) as:

1: XGm
= XGa

∪ (XGa
× {σi | σ ∈ Σa})

2: Σm

3: δGm(x, e) =

δGa(x, e) if x ∈ XGa

and e /∈ Σi
a

(x, e) if x ∈ XGa

and e ∈ Σi
a

x1 if x ∈ XGa
× {σi|σ ∈ Σa},

x = (x1, e1), e =M(e1)
undefined otherwise

4: x0,Gm
= x0,Ga

Given the automaton Gm, we can know discuss the
observable events of this system. After the execution of an
event ei, the legitimate counterpart e is executed in Gm. The
execution of an event ed is still considered unobservable
in Gm. Therefore, we can now specify the events in Σe

a

as unobservable. Moreover, the events that are unobservable
in G continue to be unobservable in Gm. Thus, the unob-
servable event set for Gm is Σm,uo = Σuo ∪ Σe

a and the
observable set is Σm,o = Σo. We also define Pm,o as the
projection operation of strings in Σm to Σm,o. The following
proposition shows that the language observed by a supervisor
R through Ga is the same as the one observed by Gm.

Proposition IV.2. Po(PR
e (L(Ga))) = Pm,o(L(Gm))

The attacked system Gm has Σm,o = Σo as the set of
observable events in Gm and Ca as the set of control patterns.
To be able to use the results from [14], we need the following
proposition.

Proposition IV.3. The set Ca is closed under union.

Since Ca is closed under union, the results in [14] are
applicable to Gm. Let K = L(trim(Gm, Xcrit)) be the lan-
guage specification on L(Gm), where trim(Gm, Xcrit) is the
accessible subautomaton of Gm after deleting states Xcrit ⊆
XGm . From [14], it follows that for any K ′ ∈ CO(K), if
K ′ 6= ∅, there exist a supervisor SP : Po(L(Gm)) → Ca

such that L(SP /Gm) = K ′. Also, the supremal element of
CO(K) does not exist in general. For this reason, we search
for a supervisor that generates a maximal K ′.

Problem IV.2 (SCP-AP-Supervisory Control with Arbi-
trary Control Patterns). Given the attacked system Gm, and

K = L(trim(Gm, Xcrit)). Let K ′ ∈ CO(K), K ′ 6= ∅,
such that @L ∈ CO(K) with K ′ ⊆ L, namely K ′ is a
maximal sublanguage in CO(K). Synthesize a supervisor
SP : Po(L(Gm))→ Ca that satisfies L(SP /Gm) = K ′.

Since the languages L(Gm) and K are regular languages,
the supervisor SP can be encoded by a DFA Rm. Next,
we define a supervisor R for the RSS problem based on the
supervisor Rm. Using this supervisor, we prove that the RSS
problem is reducible to the SCP-AP problem.

Definition IV.5. Assume that CO(K) 6= ∅ in the SCP-
AP problem. Let the supervisor Rm be a solution for
the SCP-AP problem. Construct the supervisor R =
(XR,Σ, δR, x0,R) in the following manner.

1: XR = XRm

2: Σ = Σ

3: δR(x, e) =

{
δRm

(x, e) if x ∈ XR and e ∈ Σ
undefined otherwise

4: x0,R = x0,Rm

Definition IV.5 constructs the supervisor R by simply
removing the events in Σe

a. The transitions with events in
Σe

a on Rm are self-loops since they are unobservable on the
SCP-AP problem. We now provide the connection between
the RSS problem and the SCP-AP problem.

Theorem IV.1. The RSS problem is reducible to the SCP-
AP problem.

Remark 1: Theorem IV.1 provides a reduction of the RSS
problem to the partially observed supervisory control prob-
lem with arbitrary control patterns. Although an algorithm
to synthesize a supervisor was not provided in [14], one can
adapt standard algorithms that compute maximal controllable
and observable sublanguages to consider control patterns. For
example, the VLP-PO algorithm from [5] can be adapted
such that it considers control patterns. Based on the runtime
of the original VLP-PO algorithm, the RSS problem can be
solved in O

(
(|Σc|2(|XG|+ |XG||Σa|))e|XG|+|XG||Σa|

)
time.

Remark 2: Event in the case of G being fully observable,
the supremal robust language element does not exist in
general. Sufficient and necessary conditions for the existence
of the supremal robust supervisor exist. A necessary but
not sufficient condition is the familiar normality condition
(Σc ⊆ Σo) [3], [17]. A second condition is needed, i.e.,
Σa ⊆ Σuc.

V. CONCLUSION

We have considered a class of problems in cyber-security
where sensor readings in a feedback control system may be
manipulated by a malicious attacker. We leverage techniques
from supervisory control with arbitrary control patterns of
partially-observed discrete event systems to develop a so-
lution methodology to prevent damage to the system when
some sensor readings may be edited by the attacker. Our
problem formulation considered that the attacker perfectly
knows the plant and the synthesized supervisor and there is
not a detection module explicitly trying to diagnose sensor

attacks. Thus, the supervisor alone must ensure robustness
against sensor deception attacks. We showed how this prob-
lem can be reduced to a partially observed supervisory
control problem with arbitrary control patterns. Our solu-
tion methodology has single exponential complexity over
the number of states of the plant and events. It is more
computationally efficient than the previous method in the
literature [13].

It would be of interest to merge the techniques of robust
synthesis with intrusion detection modules. Moreover, it
would be interesting to relax some assumptions on the
attacker. For example, introducing costs on the attacker
modifications might be interesting.

REFERENCES

[1] A. A. Cardenas, S. Amin, and S. Sastry. Secure control: Towards
survivable cyber-physical systems. In 2008 The 28th International
Conference on Distributed Computing Systems Workshops, pages 495–
500, June 2008.

[2] L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune. Detection
and mitigation of classes of attacks in supervisory control systems.
Automatica, 97:121 – 133, 2018.

[3] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2008.

[4] C. H. Golaszewski and P. J. Ramadge. Control of discrete event
processes with forced events. In 26th IEEE Conference on Decision
and Control, volume 26, pages 247–251, Dec 1987.

[5] N. B. Hadj-Alouane, S. Lafortune, and F. Lin. Centralized and
distributed algorithms for on-line synthesis of maximal control policies
under partial observation. Discrete Event Dynamic Systems, 6(4):379–
427, Oct 1996.

[6] Y. Li, F. Lin, and Z. H. Lin. A generalized framework for supervisory
control of discrete event systems. International Journal of Intelligent
Control and Systems, 2:139–160, 1998.

[7] P. M. Lima, L. K. Carvalho, and M. V. Moreira. Detectable and un-
detectable network attack security of cyber-physical systems. In 14th
IFAC Workshop on Discrete Event Systems WODES 2018, volume 51,
pages 179 – 185, 2018.

[8] L. Lin, S. Thuijsman, Y. Zhu, S. Ware, R. Su, and M. Reniers.
Synthesis of Successful Actuator Attackers on Supervisors. ArXiv
e-prints - http://arxiv.org/abs/1807.06720, 2018.

[9] R. Meira-Góes, E. Kang, R. Kwong, and S. Lafortune. Stealthy
deception attacks for cyber-physical systems. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), pages 4224–4230,
Dec 2017.

[10] R. Meira-Góes, E. Kang, R. Kwong, and S. Lafortune. Synthesis of
sensor deception attacks at the supervisory layer of cyber-physical
systems. under review at Automatica, 2019.

[11] R. Meira-Góes, R. Kwong, and S. Lafortune. Synthesis of sensor
deception attacks for systems modeled as probabilistic automata. In
2019 American Control Conference (ACC), July 2019.

[12] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM Journal on Control and Optimization,
25(1):206–230, January 1987.

[13] R. Su. Supervisor synthesis to thwart cyber attack with bounded sensor
reading alterations. Automatica, 94:35 – 44, 2018.

[14] S. Takai. Supervisory control of partially observed discrete event
systems with arbitrary control patterns. International Journal of
Systems Science, 31(5):649–656, 2000.

[15] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson. Attack
models and scenarios for networked control systems. In Proceedings
of the 1st International Conference on High Confidence Networked
Systems, HiCoNS ’12, pages 55–64, New York, NY, USA, 2012. ACM.

[16] M. Wakaiki, P. Tabuada, and J. P. Hespanha. Supervisory control of
discrete-event systems under attacks. Dynamic Games and Applica-
tions, Sep 2018.

[17] W. M. Wonham and K. Cai. Supervisory Control of Discrete-Event
Systems. Springer International Publishing, 2018.

[18] Y. Zhu, L. Lin, and R. Su. Supervisor obfuscation against actuator
enablement attack. ArXiv e-prints - http://arxiv.org/abs/1811.02932,
2018.

	Introduction
	Preliminaries
	Robust Supervisory Control against Sensor Deception Attacks
	Attack model
	Closed-loop system under deception attack
	Known attack strategy
	Supervisor robust against sensor deception attacks

	Solution to the Robust Supervisory Control Problem
	Conclusion
	References

