
Synthesis of Sensor Deception Attacks for Systems Modeled as
Probabilistic Automata

Rômulo Meira-Góes, Raymond Kwong and Stéphane Lafortune

Abstract— We study the security of control systems in the
context of the supervisory control layer of stochastic discrete-
event systems. Control systems heavily rely on correct commu-
nication between the plant and the controller. In this work, we
consider that such communication is partially compromised by
a malicious attacker. The attacker has the ability to modify a
subset of the sensor readings and mislead the supervisor, with
the goal of inducing the system into an unsafe state. We consider
this problem from the attacker’s viewpoint and investigate
the synthesis of an attack strategy for systems modeled as
probabilistic automata. Specifically, we quantify each attack
strategy based on the likelihood of successfully reaching an
unsafe state. The solution methodology that we develop uses
techniques from the area of stochastic graph-games, specifically
turn-based one-player stochastic reachability games.

I. INTRODUCTION

The correct behavior of control systems depends heavily
on correct communication between the uncontrolled plant
and the controller. Most works in the existing literature
on control with robust communication focuses on random
communication faults, such as delays, information loss, and
so forth. However, in recent years, there has been an interest
in considering that a “smart” agent, or attacker, could be
responsible for communication faults. In this paper, we
consider such an attack model, where the goal of the attacker
is to induce the controller to steer the system to an unsafe
state by altering the communications from the system sensors
to the controller. Our analysis is at the supervisory control
level; hence, we adopt a discrete event modeling formalism,
where system operation and communications are event-
based. In contrast to prior work on sensor deception attacks
for Discrete Event Systems (DES), where logical models are
used, we model the system as a Probabilistic Finite-State
Automaton. This allows us to quantify, in a probabilistic
sense, attack strategies.

Several works have addressed in recent years problems
of security in the field of DES; see, e.g, [1], [10], [11],
[12], [14], [15]. Most of these works focus on the intrusion
detection problem for some classes of attacks, while some of
them study the synthesis of attacks that might go unnoticed
by the detectors [11], [12], [14]. The results of [11], [12],
[14] are all in the context of logical DES models. To the

R.M.G. and S.L. are with the Department of EECS, Univer-
sity of Michigan, USA. Their work was supported in part by
US NSF grants CNS-1421122, CNS-1446298 and CNS-1738103.
{romulo,stephane}@umich.edu

R.K. is with the ECE Department, University of Toronto, Toronto,
ON M5S 3G4, Canada. His work was supported by Natural Sciences
and Engineering Research Council of Canada (grant RGPIN-2015-04273).
kwong@control.utoronto.ca

best of our knowledge, this paper is the first one to study
the synthesis of attack strategies for stochastic DES models,
at the supervisory level of the control system.

Of particular relevance to this paper is the recent work
in [12]; we use herein a similar framework for how attacks
take place on the communication from the sensors to the
controller. In [12], an attacker has compromised a subset
of the sensors (i.e., observable events) and is able to delete
sensor readings or insert fictitious ones in the communication
channel. The problem investigated is the synthesis of stealthy
sensor deception attacks for a known logical control system.
In this work, we also investigate the problem of synthesis of
sensor deception attacks. However, we study this synthesis
problem for stochastic systems. This gives rise to a broader
class of attack strategies, as compared with [12].

As a consequence of the stochastic control system model
that we adopt, it is possible to quantify each attack strategy
by the likelihood of reaching the unsafe region of the
uncontrolled plant. In this manner, a quantitative measure
is introduced in the synthesis problem of attack strategies.
We investigate the synthesis of an optimal attack strategy,
where the optimality criterion is the likelihood of reaching
the unsafe region.

Our solution methodology employs results from the area of
stochastic graph-games, more specifically 1 1

2 -player reacha-
bility games [4]. First, we show how to build the “right”
game arena that captures the interaction of the attacker and
the control system. Next, we show that the solution of the
1 1

2 -player reachability game played in the built arena can be
mapped to the solution of our problem.

Our presentation is organized as follows. Section II intro-
duces necessary background and the notation used through-
out the paper. In Section III, we review the model of sensor
deception attacks and then formalize the problem of synthesis
of optimal attack functions. In section IV, we first define the
construction of the game arena for 1 1

2 -player reachability
games and review solution methods for such games. Next,
we show how to relate the two problems of: (i) 1 1

2 -player
reachability game and (ii) synthesis of an optimal attack
function. Finally, we conclude the paper in Section V. Due
to space limitations, several proofs have been omitted.

II. PRELIMINARIES
A. Supervisory Control

We consider the supervisory level of a feedback control
system, where the uncontrolled system is modeled as a
Deterministic Finite-State Automaton (DFA) in the discrete-
event modeling formalism. A DFA is denoted by G =

(XG,Σ, δG, x0,G), where XG is the finite set of states, Σ
is the finite set of events, δG : XG ×Σ→ XG is the partial
transition function and x0,G is the initial state. The function
δG is extended, in the usual manner, to the domain XG×Σ∗.
The language generated by G is defined by L(G) = {s ∈
Σ∗|δG(x0,G, s)!}, where ! means that the function is defined
for these arguments. We define ΓG(x) = {e ∈ Σ|δ(x, e)!}
as the active event set of state x ∈ XG.

In the context of the supervisory control theory of DES
[13], system G is considered as the uncontrolled system
(plant) that needs to be controlled in order to satisfy given
safety specifications. In order to control G, the event set Σ
is partitioned into two disjoint sets, Σc and Σuc. These sets
are, respectively, the set of controllable events and the set
of uncontrollable events. The safety specifications on G are
enforced by a supervisor, denoted by S. The supervisor S
dynamically enables/disables controllable events to generate
provably “safe” controlled behavior, denoted by S/G. The
behavior of S/G is the closed-loop prefix-closed language
L(S/G); see, e.g., [2]. A supervisor is formally defined as
a function S : Σ∗ → Γ, where Γ = {γ ⊆ Σ|Σuc ⊆ γ} is
the set of admissible control decisions. Such decisions must
guarantee that the supervisor never disables an uncontrollable
event. Without loss of generality, we assume that S is
realized by an automaton R = (XR,Σ, δR, x0,R) (see, e.g.,
[2]). We will use both notations S and R interchangeably.

For any string s ∈ Σ∗, we use the following notation. We
denote by eis the ith event of s such that s = e1

se
2
s . . . e

|s|
s ,

where |s| denotes the length of s. We denote by si the ith

prefix of s, namely si = e1
s . . . e

i
s and s0 = ε. Finally, we

use N to be the set of natural numbers, [n] and [n]+ to be,
respectively, the set of natural numbers and the set of positive
natural numbers both bounded by n ∈ N.

B. Stochastic Discrete Event Systems

We model a stochastic DES as a Probabilistic Finite-
State Automaton (PFA). A PFA is denoted by H =
(XH ,Σ, δH , P, x0,H), where XH , Σ, and x0,H are defined
as in a DFA, P : X × Σ × X → [0, 1] is the transition
probability function and δH : X×Σ→ X is the deterministic
transition function defined by P . Given an event e ∈ Σ
and two states x, y, the function P (x, e, y) specifies the
probability of moving from state x to state y with event
e. For simplicity, we write Pe(x) when ∃y ∈ XH such
that P (x, e, y) > 0. In general, for any x ∈ X we have
that

∑
e∈Σ Pe(x) ≤ 1. However, in this paper we consider

the family of nonterminating PFA, where for any x ∈
XH ,

∑
e∈Σ Pe(x) = 1. This assumption is without loss of

generality, as any terminating PFA can be transformed to
a nonterminating one, as shown in [9]. As was mentioned
above, δH is defined by the transition probability function
P , formally δH(x, e) = y if P (x, e, y) > 0. This transition
function is assumed to be deterministic: if P (x, e, y) > 0
for some x, y ∈ XH and e ∈ Σ, then there does not
exist y∗ ∈ XH , y∗ 6= y, such that P (x, e, y∗) > 0. Using
this definition, then every PFA H can be associated with
a corresponding DFA G where δG(x, e) = δH(x, e). In

this manner, the language generated by H is defined as the
language generated by the associated G, i.e., L(H) := L(G).
For simplicity, whenever we use a DFA operator in a PFA
H , it will mean that we are analyzing the associated DFA
G.

Although L(H) is well defined, we want to define a
probability space over this language. In [7], the notion of
probabilistic-languages (p-languages) was introduced. For-
mally, Lp(H) : Σ∗ → [0, 1] is defined as:

Lp(H)(ε) = 1 (1)

Lp(H)(se) =

 Lp(H)(s)P (x, e, y) if x = δH(x0,H , s)
y = δH(x0,H , se)

0 otherwise
(2)

In fact, Lp(H) defines a probability measure over the σ-
algebra F as defined in [7]. In this work, we use the same
probability space as in [7]. One property from the measurable
sets in F is that two distinct strings s and t, such that no
string is a prefix of the other one, generate independent
measurable sets. This property implies that the probability
of generating either one of these two strings is equal to
Lp(H)(s)+Lp(H)(t). This useful result will be exploited in
both the problem formulation and the solution methodology.
For more details on the probability space used in this paper,
please see [7].

Supervisory control of stochastic DES was first introduced
in the work of [9]. In this paper, we use the results of
supervisory control of stochastic DES introduced by [8].
In [9], both the supervisor and the plant have stochastic
models, namely PFA. On the other hand, the work of [8] only
considers the plant to behave stochastically. The supervisor is
defined to be non-probabilistic, as in the previously-described
supervisory control framework. However, the control actions
of the supervisor (which disable events) do alter the proba-
bilistic behavior of the plant. Assume that the requirements
for the stochastic controlled behavior are the same as the
one presented for the non-probabilistic case, namely, safety
requirements. Sufficient and necessary conditions for the
existence of a supervisor for the above control problem are
provided in [8]. A polynomial-time algorithm to synthesize
maximally permissive supervisors is also presented.

In the presence of a supervisor R, the probability transition
function of the plant H needs to be updated accordingly.
Namely, the disablement of events by R increases the prob-
ability of the enabled ones. In other words, R/H generates
another p-language. Given a state x ∈ XH , a state q ∈ XR,
and an event e ∈ ΓH(x)∩ ΓR(q), the probability of e being
executed is given by the standard normalization:

P x,qe =
Pe(x)∑

e′∈ΓH(x)∩ΓR(q) P
′
e(x)

(3)

Without loss of generality, unsafe strings are consid-
ered to be those outside of the controlled language1. For-

1In the general case, behavior outside the controlled language might not
be unsafe. However, the techniques here can be adapted for this case as
well.

mally, unsafe strings are defined by the set L(H)\L(R/H).
However, measuring this set would be challenging in our
probability space. For this reason, let Uuns = {s ∈
L(H)\L(R/H)|s|s|−1 ∈ L(R/H)} be the set with the
shortest distinct strings that belong to L(H)\L(R/H). From
now on, Uuns is considered to be the set of unsafe strings.
We define the set of unsafe state pairs for the controlled
system R/H by Xuns = {(x1, x2) ∈ XH × XR|@s ∈
L(R/H) s.t. x1 = δH(x0,H , s) ∧ x2 = δR(x0,R, s)}.

We use the following example as a running illustrative
example throughout the paper.

Example II.1. Consider a robot that is navigating an area
that has been partitioned as a grid with 2 rows and 2 columns,
as shown in Figure 1(a). The robot moves freely in the region.
However, it needs to do its moves without colliding with any
obstacle. In our example, it needs to avoid the gray region.

(a) Example robot in a 2 by
2 grid. The gray square repre-
sents an obstacle

4

21

3

rS rN

rW

rE

rS rN

rW

rE

(b) General model of robot in
a 2 by 2 grid

Fig. 1: Robot example

The robot is modeled as the PFA H shown in Figure
1(b). Every event is controllable and the probability transition
function is defined as P (x, e, y) = 1

2 for the transitions
defined by the model in Figure 1(b). We show two supervi-
sors in Figure 2 that guarantee the safety of the robot. The
supervisor is deterministic but its presence alters the behavior
of H . For example, in the controlled behavior R1/H , the
probability of event rS to occur at state 3 given that the
supervisor is at state C is P 3,C

e = 1.

BA

C

rS rN

rW

rE

(a) Supervisor R1

ED

G

rSrN

rW

rE F

H

rE

rN

(b) Supervisor R2

Fig. 2: Supervisors for robot

C. Stochastic Graph-Games
Two-player graph-games are an important field of study

in several areas of computer science, and they have been
thoroughly studied within these various fields; see [3] for
details. In this work, we are interested in perfect information
turn-based one-player stochastic reachability games (1 1

2 -
player reachability games and also known as Markov De-
cision Processes). These games are defined by two players,
namely Player 1 and Player Random, that play for an infinite
number of rounds [4].

In these games, each vertex is assigned to a specific player,
which at these vertices selects the successor state. Player
random chooses its successor according to a probability
distribution, hence the name. On the other hand, player 1
selects the successor state based on a specific goal. For these
games, the goal of player 1 is described by a reachability
condition. Consequently, the path generated by the infinite
number of rounds played by both players is either winning
or losing for player 1.

Formally, 1 1
2 -player reachability games are defined over

a directed graph G = (V,E) with V = V1 ∪ Vr, and a
probability transition function λ : Vr × V → [0, 1] with the
following properties. The vertex set is partitioned as V1, Vr
called “player 1” and “player random” vertices, respectively.
At vertices v ∈ V1, player 1 selects the successor vertex
based on the edge set E. At a random vertex v, the successor
vertex is chosen according to λ, namely, an edge (v, u) ∈ E
is selected with probability λ(v, u) for u ∈ V . Note that, for
any vertex v ∈ VR and any vertex u ∈ V , (v, u) ∈ E if
and only if λ(v, u) > 0. The pair G and λ is also called the
arena of the game. To complete the problem formulation,
the set Obj ⊂ V is defined to be the reachability objective
for player 1. In other words, player 1 wins the game if it
reaches any vertex in Obj.

We use the same terminology used in the literature of
graph-games. A path or a run ρ of the game G is an infinite
sequence ρ = v0v1 . . . such that for any i ∈ N, vi ∈ V
and (vi, vi+1) ∈ E. The set Prefv(G) is the set of all
finite-length prefixes of runs in G, starting from v ∈ V .
Strategies in graph-games normally require memory and they
are randomized. A deterministic (or pure) strategy is defined
by a map σ : V ∗V1 → V . However, it is known that for 1 1

2 -
player reachability games, pure and memoryless strategies
suffice [4], e.g., σ : V1 → V .

Once a strategy σ for player 1 is fixed, the path ρσv
results in a random walk in G, and the strategy can be
evaluated (policy evaluation). The game becomes a Markov
chain and the probability of winning the game starting from
any vertex is equal to the first passage probability from the
initial vertex to the set Obj. We define by Prefσv (G) all
finite-length prefixes of paths ρσv ; formally: Prefσv = {ρ =
v0 . . . vn|v0 = v ∧ (∀i ∈ [n] ⇒ (vi+1 = σ(v0 . . . vi) ∨
(vi ∈ Vr ∧ (vi, vi+1) ∈ E)))}. The work of [5] provides
polynomial-time algorithms to solve 1 1

2 -player reachability
games. For more details on stochastic graph-games, see [3].

III. PROBLEM DESCRIPTION

We consider an uncontrolled plant described by PFA H
that is being controlled by a supervisor modeled by DFA
R. The controlled system R/H is assumed to be safe,
i.e., the supervisor R was constructed such that it provably
prevents H from generating any existent unsafe behavior.
For instance, R could have been designed using the methods
presented in [8].

The correct operation of the system R/H relies heavily
on the correct bidirectional communication channel between
the plant and the supervisor. Our goal is to investigate the

performance of R/H when this assumption is violated. More
specifically, this violation is due to a malicious attacker.
Even though the attacker could undermine both directions
of this communication, we only investigate corruption in the
direction from plant to supervisor, i.e., compromised sensors.

As in [12], the attacker is capable of manipulating a subset
of the events. We define this set as Σa ⊆ Σ, and it is
called the compromised event set. Any event in Σa can
be manipulated by the attacker, where “manipulate” means
ability to insert fictitious events in the channel or to erase
events from the channel. Consequently, the supervisor might
receive corrupted information from the plant. Under this
unreliable communication model, the supervisor R may not
guarantee the safety requirement for the controlled system.
This possible unsafe behavior is the focus of our paper.

The previous work [12] investigated if an attacker could
modify, without being detected, the information sent from
the plant to the supervisor while causing the plant to reach
an unsafe state. If such modifications exist, the attacker
has an attack strategy to reach its goal. In [12], both the
plant and the supervisor were modeled as DFA, resulting
in an analysis of terms of all possible behaviors, without
quantification. In this paper, the plant is modeled as a PFA,
as our objective is to obtain quantitative results for attack
functions. Namely, we wish to investigate the likelihood of
an attack strategy reaching the unsafe region of the plant.
This probabilistic viewpoint is more general than the logical
viewpoint considered in [12].

First, let us formally define the model of an attacker.

Definition III.1. An attacker that hijacks the events in Σa
in the communication channel between the plant and the
supervisor is defined as a map A : Σ∗ → Σ∗. The map
A must satisfy the following conditions for any s ∈ Σ∗:

1) If s = ε, then A(s) ∈ Σ∗a
2) If e|s|s ∈ Σa, then A(s) ∈ Σ∗a
3) If e|s|s ∈ Σ\Σa, then A(s) ∈ {e|s|s }Σ∗a
The attack function A only defines the attack strategy

for the last event. In other words, it just expresses that the
last event e|s|s is substituted by A(s). For convenience, we
define the function Â that recursively concatenates these
modifications for any string s ∈ Σ∗. For any s ∈ Σ∗, we
define Â(s) = Â(s|s|−1)A(s).

The introduction of the attack function A in the communi-
cation channel between the plant and the supervisor generates
a new controlled behavior. In fact, the supervisor S and the
attack function A can be combined to form a new supervisor,
denoted by SA, where SA(s) = S ◦ Â(s) is the resulting
control action, under attack, after string s has been executed
by the system. Given SA, we then obtain L(SA/H) as the
new controlled language, which is defined as follows:

1) ε ∈ L(SA/H)
2) s ∈ L(SA/H) ∧ se ∈ L(H) ∧ e ∈ SA(s) ⇔ se ∈
L(SA/H)

Remark 1: SA/H generates a p-language in the same manner
as S/H .

Remark 2: In the definition of the language of SA/H ,
the attacker completes its string modification without any
interruption of the plant H . In other words, the plant H does
not execute any event in the middle of the attacker editions.

Next, we introduce the notions of complete and consistent
attack function. Intuitively, an attack function is complete if
it is defined for every string in the new controlled behavior
L(SA/H). This means that the attacker always “knows”
what to do next. An attack function is consistent if its
modifications are consistent with the supervisor S, i.e., the
supervisor receives an event that is possible in its current
state. In this work, we only consider complete and consistent
attack functions. The formal definitions of these notions are
given next.

Definition III.2. An attack function A is complete if for any
s in L(SA/H), we have that A(s) is defined.
An attack function A is consistent if for any e ∈ Σ, s in
L(SA/H) s.t. se ∈ L(SA/H) with A(se) = t, then ei+1

t ∈
S(Â(s)ti) for all i ∈ |t| − 1.

Since the controlled behavior under the influence of attack
function A is well defined by L(SA/H), we can define the
objective of the attacker based on this language. The attack
function is successful if ∃s ∈ Uuns such that s ∈ L(SA/H).
Moreover, an attack function A is quantified by the proba-
bility of generating the strings s ∈ Uuns ∩ L(SA/H), since
Lp(SA/H) is well defined. We define the winning level of
A to be the probability that SA/H generates unsafe strings.
Formally,

winA =
∑

s∈Uuns

Lp(SA/H)(s) (4)

Remark: Every string in Uuns is distinct, consequently
winA ≤ 1.

The definition of the value winA makes it possible to
compare attack functions. For example, given two attack
functions A and A′, if winA ≥ winA′ , then it means that
strategy A is more likely to reach the unsafe region of H
than A′. A natural question to ask is if there exists an attack
function that is more likely to reach the unsafe region than
any other attack function. Formally, the problem is posed as
follows.

Problem III.1. [Optimal Attack Function Synthesis Prob-
lem] Given a plant modeled as PFA H , a supervisor modeled
as DFA R, and the set of compromised events Σa ⊆ Σ,
synthesize a complete and consistent attack function A∗, if
one exists, such that for any other complete and consistent
attack function A, the following holds:

winA∗ ≥ winA (5)

IV. SOLUTION

The solution of Problem III.1 is obtained by relating
it to the 1 1

2 -player reachability graph-game problem. We
start by showing the construction of the game arena and its
reachability objective using H , R, and Σa. Next, we review
one technique to solve the reachability game. Finally, we

map the solutions of these two problems to each other in the
third part of this section.

A. Construction of the Arena

In the problem definition, we assume that H and R are
given as a PFA and a DFA, respectively. For this reason,
the vertices of player random are constructed based on these
two models. On the other hand, player 1 represents the attack
function. Therefore, its vertices are defined based on H , R
and Σa. The arena for the 1 1

2 -player reachability graph-game
is defined as follows.

Definition IV.3. Given plant H , supervisor R, and compro-
mised event set Σa, the game arenaA = (G, λ) is constructed
in the following manner.
• V1 ⊆ XH × XR × (Σ ∪ {ε} ∪ {εe|e ∈ Σa}) and
Vr ⊆ XH ×XR. For a vertex v, we denote by vH , vR
and ve the plant state, the supervisor state, and the last
event received by the supervisor, i.e., v = (vH , vR, ve)
if v ∈ V1 or v = (vH , vR) if v ∈ Vr. The reason
for introducing the set {εe|e ∈ Σa} is to differentiate
vertices in V . (This will become clear once the set E
is defined.) Moreover, we treat the elements in this set
as empty strings when constructing strings of events.

• The set E is defined as follows:
1) For any v, u ∈ V1 s.t. (vH , vR) /∈ Xuns, then

(v, u) ∈ E if ∃e ∈ Σa s.t. uH = vH , uR =
δS(vR, e) and ue = e.

2) For any v ∈ V1 s.t. (vH , vR) /∈ Xuns and u ∈
Vr, then (v, u) ∈ E with u = (vH , vR) if ∃e ∈
ΓH(vH) ∩ ΓS(vR).

3) For any v ∈ Vr and u ∈ V1, then (v, u) ∈
E if ∃e ∈ ΓH(vH) ∩ ΓS(vR) where u =
(δH(vH , e), vR, εe) if e ∈ Σa and (uH , uR) /∈
Xuns, or u = (δH(vH , e), δS(vR, e), e) otherwise.

• Post-Processing:
1) If v ∈ V1 and @u ∈ V s.t. (v, u) ∈ E, then

(v, u) ∈ E with u = (vH , vR, ε)

• The probability function λ is defined for any (v, u) ∈ E
s.t. v ∈ Vr and u ∈ V1 as λ(v, u) = P vH ,vRe where
e ∈ Σ and uH = δH(vH , e).

The rules defining the set E for arena A capture the
interaction between the controlled system and the attack
function. Rule 1 captures player 1 sending information to
supervisor R; for this reason only states in R are updated.
Rule 2 says that player 1, at that moment, does not want
to share any more information with R; it wants to wait for
the response of plant H . Moreover, rules 1 and 2 enforce
that states in Xuns are absorbing, e.g., no transitions are
defined after these states are entered. Rule 3 is related to the
execution of events in H . The post-processing on E ensures
that no deadlock is present in G.

In order to complete the construction of the game, we must
specify the reachability objective for player 1. This objective
must be aligned with the objective of the attack function in
Problem III.1. Formally, player 1 needs to reach any state

in Obj = {v ∈ V1|(vH , vR) ∈ Xuns}. In this manner, the
reachability game is well defined by A and the set Obj;
in this regard, we set v0 = (x0,H , x0,R, ε) to be the initial
vertex. In order words, we only analyze runs of A that start
from vertex v0.

Example IV.2. In order to illustrate the construction of A,
recall the plant H and the supervisor R1 shown in Ex. II.1.
The compromised event set for this example is Σa = {rE}.
Figure 3 represents A for the controlled system R1/H . In
Figure 3, the vertices in V1 are represented by rectangles,
while vertices in Vr are identified by diamonds. The function
λ is defined by the values in the edges between a random
vertex and a player-1 vertex, i.e., λ((3, C), (1, A, rS)) = 1.

Fig. 3: Arena for controlled system R1/H and Σa = {rE}

B. Solution of 1 1
2 -player reachability graph-games

We briefly review one technique to solve 1 1
2 -player reach-

ability games. The result is attributed to [6] and shown in
[5]. The optimal winning value for each vertex is calculated
by solving a linear programming (LP) problem [5].

In order to introduce the LP problem, some notation is
necessary. For any v ∈ V , define val(v) to be the probability
that player 1 wins the game starting in v. The optimal value
of winning for each vertex in V is the optimal solution to
the following LP problem. (Adapted from [5].)

minimize
∑
v∈V

val(v), subject to

val(v) ≥ val(u) if v ∈ V1 ∧ (v, u) ∈ E
val(v) =

∑
(v,u)∈E

λ(v, u)val(u) if v ∈ Vr

val(v) ≥ 0 v ∈ V
val(v) = 1 v ∈ Obj

(6)
Remark 1: The optimal winning strategy is defined based on
the optimal winning values of each vertex, i.e., memoryless
strategy. It is defined by simply selecting at each vertex
v ∈ V1 any neighbor with the largest optimal winning value.
Next, we show the optimal winning values and the optimal
winning strategy for the game A constructed in Ex. IV.2.

Remark 2: Although the formulation of the LP may appear
counter-intuitive at first (since the LP minimizes over the
winning values and the attacker wants to maximize the
winning values), it does find the optimal winning values
for each vertex. Specifically, examining the LP constraints
reveals that minimizing over the sum of val(v) does return
the maximal winning values.

Example IV.3. In Ex. IV.2, we presented the arena A for the
controlled system R1/H and Σa = {rE}. Solving the LP
problem formulated as in Equation (6) for arena A and Obj
returns the optimal value val(1, A, ε) = 1. Moreover, the op-
timal value is val(v) = 1 for v ∈ V \{(1, B, rE), (1, B, ε)}
and val(v) = 0 for v ∈ {(1, B, rE), (1, B, ε)}. One
optimal strategy is defined as σ∗((1, A, ε)) = (1, A),
σ∗((3, C, rN)) = (3, C), σ∗((1, A, rS)) = (1, A),
σ∗((2, A, εrE)) = (2, A), σ∗((4, C, rN)) = (4, C, ε), and
σ∗((4, C, ε)) = (4, C, ε). This strategy limits A within the
blue shaded region in Figure 3.

Similarly, we can solve the problem for system R2/H
and Σa = {rE}. Solving the LP problem for this controlled
system returns the optimal value val(1, D, ε) = 1/2.

C. Solution of the Optimal Attack Function Synthesis Prob.

The definition of winning level is directly related to an
attack function A. In other words, once an attack function A
is fixed, we obtain the language L(SA/H) and consequently
the value of winA. The same idea applies to the game played
in A; once the strategy of player 1 is fixed, we can calculate
the probability of winning the game at any vertex. The
construction of A and Obj ties these two problems together,
as we formalize in this section. First, we show that any finite
run in A starting from v0 is related to a string in H .

Proposition IV.1. For every run ρ ∈ Prefv0(A) with ρ =
v0 . . . vn, there exists s ∈ L(H) s.t. δH(x0,H , s) = vnH .

The second proposition is also related to the construction
of A. While the first proposition relates A with H , it would
be interesting to have a converse proposition. Nonetheless,
this is not possible since A is constructed based on the
compromised event set Σa. For this reason, the proposition
below ties the relation between the language L(SA/H) for
any complete and consistent attack function A with finite
runs in A.

Proposition IV.2. Given any complete and consistent attack
function A, for any s ∈ L(SA/H) and t = Â(s), there
exists a unique ρ ∈ Prefv0(A) with ρ = v0u1v1 . . . u|s|v|s|

s.t. t = t0t1 . . . t|s|, where vi ∈ V ∗1 is defined for all i ∈ [|s|]
and ki ∈ N as vi = vi0 . . . viki , ui ∈ Vr, ti = vi0e . . . v

iki
e

and vnkne 6= ε.

Prop. IV.2 relates any pair of strings (s, Â(s)), given an
attack function A, to a unique finite run in A. If we eliminate
the infinite runs that were added in the post-processing of
E in Def. IV.3, then there exists a one-to-one map between
pairs of strings and finite runs. Consequently, attack functions
can be related to strategies for the game A by a one-to-
one map. Note that, the runs related to (s, Â(s)) follow the
pattern described in Prop. IV.2, e.g., ρ = v0u1v1 . . . unvn.
Thus, the infinite runs are either because vn generates a cycle
within vertices in V1 or ρ = v0u1v1 . . . ujvj . . . ujvj . The
proof of Prop. IV.2 gives us a way to convert any attack
function to a strategy, but it is unclear if the converse is
true. Lemma IV.1 below formalizes this one-to-one relation
between attack functions and strategies. First, we provide

more intuition about this relation since it is a key concept
for the results of this section.

Figure 3 helps us understand this one-to-one map for mem-
oryless strategies. Assume that strategy σ is memoryless,
then Aσ is the substructure of A when the game is limited
by strategy σ. In Figure 3, Aσ∗ is the substructure generated
by strategy σ∗ as it was defined in Ex. IV.3. We want to show
that we can define an attack function based on σ∗, namely
Aσ∗ .

Let us select the run ρ1 = v00u1 = (1, A, ε)(1, A),
since σ∗(ρ1) ∈ Vr. The run ρ has only one vertex, thus
neither H nor R have evolved. For this reason, the pair of
strings (ε, ε) is associated with this run. Consequently, we
set Aσ∗(ε) = ε. Next, select the run ρ2 = v00u1v10u2 =
(1, A, ε)(1, A)(2, A, εrE)(2, A). Plant H has evolved from
state 1 to state 2 in ρ2, for this reason the string rE was
executed in H . On the other hand, the supervisor R did
not change its state in ρ2, which means that the supervisor
observed string ε, i.e., it remains in state A. Consequently,
the pair of strings (rE, ε) is associated with ρ2. In this case,
we set Âσ∗(rE) = ε. If we continue this process, Aσ∗ will
be a well-defined complete and consistent attack function.

We just argued that from a memoryless strategy, one can
construct an attack function, and the proof of Prop. IV.2
shows the converse statement. Lemma IV.1 formalizes this
claim. Moreover, Lemma IV.1 does not make the assumption
of memoryless strategies.

Lemma IV.1. Any strategy σ for the game A can be written
as a complete and consistent attack function Aσ . Conversely,
every complete and consistent attack function A can be
written as a strategy σA for the game played in A.

Proof. We first show how to construct a complete and
consistent attack function Aσ given a strategy σ for the game
played in A. The second part of the proof, to construct a
strategy σA given an attack function A, follows from the
proof of Proposition IV.2.

We want to show that for any strategy σ : V ∗V1 → V
we can define a complete and consistent attack function Aσ .
Since the strategy is fixed, we only analyze runs that are
generated by A restricted by the strategy σ (Aσ), e.g. runs
that generate prefixes in Prefσv0(A). More specifically, to
generate Aσ only two types of runs are analyzed. These type
of runs are related to the case where for a specific s, Aσ(s)
is defined to be an arbitrarily long string, or a finite string.

Let us use the same notation as in Proposition IV.1 to
describe these runs, e.g. vi ∈ V ∗1 and ui ∈ Vr for i ∈ N.
The first case is the infinite runs that are described in the
following form.

ρ1 = v0u1 . . . unvn (7)

Thus, the sequence of vertices in vn form a cycle.
In other words, after a finite prefix the run remains
only in V1 vertices. For example, if we define σ for
the arena in Figure 3 as σ((1, A, ε)) = (1, B, rE),
σ((1, B, rE)) = (1, B, ε) and σ((1, B, ε)) = (1, B, ε), then

run (1, A, ε)(1, B, rE)(1, B, ε)(1, B, ε) . . . belongs to Aσ
and it follows the pattern as in Equation 7.

The second case is the infinite runs that are incrementally
defined by the following prefixes.

ρ2 = v0u1v1 . . . unvnun+1 (8)

Therefore, it is all the runs that alternate between a finite
sequence of vertices in V1 and one vertex in Vr.

We build Aσ incrementally, starting with i = 0. For the
initial condition, if there exists an infinite run ρ1 = v0 =
v00v01 . . ., then we define Aσ(ε) = v00

e v
01
e Otherwise,

we select the run ρ2 = v0u1 and define Aσ(ε) = v00
e . . . v0k0

e .
Note that, these two cases are mutually exclusive and Aσ(ε)
is only defined once. If the run ρ1 = v0 = v00v01 . . . exists
in Aσ then the run ρ2 = v0u1 will not exist.

For i = 1. In this case, we first select all the infinite
runs ρ1 = v0u1v1 as in Equation (7). The run ρ1 is related
with the pair of strings (s, t), where s = e1

s with v10
H =

δH(u1
H , e

1
s) and t = t0t1 with t0 = v00

e . . . v0k0
e and t1 =

v10
e v

11
e Thus, we define Aσ(s) = t1.

Similarly, we select all finite runs ρ2 = v0u1v1u2 as
in Equation (8). The run ρ2 is related with the pair of
strings (s, t), where s = e1

s with v10
H = δH(u1

H , e
1
s) and

t = t0t1 with tj = vj0e . . . v
jkj
e for j ∈ [1]. Thus, we define

Aσ(s) = t1. The difference between the two runs is that t1
is an arbitrarily long string for the first type of runs. On the
other hand, t1 is a finite string for the second type of runs.

Let us generalize Aσ for any i ∈ N. First select all the
infinite runs ρ1 = v0u1v1 . . . uivi as in Equation (7). The run
ρ1 is related with the pair of strings (s, t), where s = e1

s . . . e
i
s

with vj0H = δH(ujH , e
j
s) for j ∈ [i]+ and t = t0t1 . . . ti with

tj = vj0e . . . vjk0e for any j ∈ [i] and ti = vi0e v
i1
e Thus,

we define Aσ(s) = ti. Similarly, we select all the finite
runs ρ2 = v0u1v1 . . . uivi as in Equation (8). The run ρ2

is related with the pair of strings (s, t), where s = e1
s . . . e

i
s

with vj0H = δH(ujH , e
j
s) for j ∈ [i]+ and t = t0 . . . ti with

tj = vj0e . . . v
jkj
e for j ∈ [i]. Thus, we define Aσ(s) = ti.

Each run in the set of runs in Aσ and that follows the
pattern of Equation (7) or (8) has a one-to-one map to a
string s that is executed in L(H). For this reason, Aσ(s) is
a well defined map. Note that Aσ is complete and consistent
by construction. Moreover, Aσ is uniquely defined.
Remark: Proposition IV.1 says that there exists a string in
L(H) for every finite run in A. The strategy σ induces a set
of runs in A, which is normally a subset of all runs generated
by A. It is only for these runs that we define Aσ .

The second lemma is a direct consequence of Lemma IV.1.

Lemma IV.2. Given a strategy σ for the game A and
objective Obj, then winAσ = valσ(v0), where v0 is the
initial vertex of A and valσ(v0) is the value of winning
the game with strategy σ. Conversely, given a complete and
consistent attack function A, then winA = valσA(v0).

Finally, we are able to state the main theorem of the paper.
The theorem ties the solution of the 1 1

2 -player reachability

graph-game defined by A and the set Obj with the solution
of Problem III.1.

Theorem IV.1. Consider the 1 1
2 -player reachability graph-

game defined by A and the set Obj. If σ is an optimal
strategy for the 1 1

2 -player reachability graph-game, then Aσ
is a solution for Problem III.1.

V. CONCLUSION

We have considered the problem of synthesis of attack
functions for sensor deception attacks at the supervisory level
of feedback control systems, where the system is modeled
as a probabilistic finite-state automaton controlled by a
given deterministic supervisor. Given the stochastic nature
of the system model, attack functions were quantified by
the likelihood of reaching the unsafe region. We leveraged
techniques from supervisory control of discrete event systems
to formulate the problem, and techniques from stochastic
graph-games to solve it. In the future, it would be of interest
to investigate defense measures for the supervisor to prevent
such attacks from succeeding.

REFERENCES

[1] L. K. Carvalho, Y. C. Wu, R. Kwong, and S. Lafortune. Detection
and mitigation of classes of attacks in supervisory control systems.
Automatica, 2018. To appear.

[2] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2008.

[3] K. Chatterjee and T. A. Henzinger. A survey of stochastic ω-regular
games. Journal of Computer and System Sciences, 78(2):394 – 413,
2012.

[4] A. Condon. The complexity of stochastic games. Information and
Computation, 96(2):203 – 224, 1992.

[5] A. Condon. On algorithms for simple stochastic games. In Advances
in Computational Complexity Theory, volume 13 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 51–
73. American Mathematical Society, 1993.

[6] C. Derman. Finite State Markovian Decision Processes. Academic
Press, Inc., Orlando, FL, USA, 1970.

[7] V. K. Garg, R. Kumar, and S. I. Marcus. A probabilistic language
formalism for stochastic discrete-event systems. IEEE Transactions
on Automatic Control, 44(2):280–293, Feb 1999.

[8] R. Kumar and V. K. Garg. Control of stochastic discrete event systems
modeled by probabilistic languages. IEEE Transactions on Automatic
Control, 46(4):593–606, Apr 2001.

[9] M. Lawford and W. M. Wonham. Supervisory control of probabilistic
discrete event systems. In Proceedings of 36th Midwest Symposium
on Circuits and Systems, pages 327–331, Aug 1993.

[10] P. M. Lima, L. K. Carvalho, and M. V. Moreira. Detectable and un-
detectable network attack security of cyber-physical systems. In 14th
IFAC Workshop on Discrete Event Systems WODES 2018, volume 51,
pages 179 – 185, 2018.

[11] L. Lin, S. Thuijsman, Y. Zhu, S. Ware, R. Su, and M. Reniers.
Synthesis of Successful Actuator Attackers on Supervisors. ArXiv
e-prints - http://arxiv.org/abs/1807.06720, July 2018.

[12] R. Meira-Góes, E. Kang, R. Kwong, and S. Lafortune. Stealthy
deception attacks for cyber-physical systems. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), pages 4224–4230,
Dec 2017.

[13] P. J. Ramadge and W. M. Wonham. Supervisory control of a class
of discrete event processes. SIAM J. Control Optim., 25(1):206–230,
January 1987.

[14] R. Su. Supervisor synthesis to thwart cyber attack with bounded sensor
reading alterations. Automatica, 94:35 – 44, 2018.

[15] D. Thorsley and D. Teneketzis. Intrusion detection in controlled
discrete event systems. In Proceedings of the 45th IEEE Conference
on Decision and Control, pages 6047–6054, Dec 2006.

