
Demonstration of Indoor Location Privacy
Enforcement using Obfuscation ?

Rômulo Meira Góes ∗ Blake C. Rawlings ∗ Nicholas Recker ∗

Gregory Willett ∗ Stéphane Lafortune ∗

∗ Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109-2122, USA

(email:{romulo,bcraw,nrecker,willettg,stephane}@umich.edu)

Abstract: We apply discrete-event-control-theoretic techniques for opacity enforcement by
insertion or deletion of output events to the problem of location privacy enforcement in an
indoor environment where users are continuously monitored by IoT devices. We design an
obfuscator of user trajectories in a grid model with obstacles. The obfuscator must preserve a
secret (e.g., visits to secret cells of the grid), while at the same time enforce feasibility and utility
constraints for obfuscated trajectories. We implement the obfuscator to map the true location of
the user to an obfuscated location, in real time, using services provided by a data server called
the Global Data Plane which records sensor readings from IoT devices and publishes them to
subscribers. We explain how scalability of obfuscator synthesis (off-line) and instantiation (on-
line) is achieved. We demonstrate the approach on a grid with over 1,500 cells modeling the first
floor of a university building, where location estimation is achieved using the ALPS Acoustic
Location Processing System.

Keywords: discrete event systems, supervisory control, opacity, location privacy,
Internet-of-Things

1. INTRODUCTION

Given the proliferation of Internet-of-Things (IoT) devices
that are being deployed inside smart buildings, as well as
ubiquitous location tracking apps that rely on GPS, the
location and movements of a user are increasingly being
tracked, both indoors and outdoors, and this information
is often presented unaltered to external observers. The
benefits of these smart devices therefore come at a cost
to privacy. Hence, an important challenge is to protect
privacy without sacrificing the benefits provided by smart
devices.

This paper demonstrates a mechanism for enforcing a
measure of privacy while preserving a measure of utility
when a user’s trajectory is being tracked, either indoors or
outdoors. The technique used relies on obfuscation of the
user’s actual trajectory in a given environment, in order to
hide all visits to a set of pre-specified secret locations. The
obfuscated trajectory disclosed to external observers must
satisfy this secrecy condition at all times. At the same
time, obfuscated trajectories should retain some form of
utility, i.e., they cannot suppress all information. In this
work, utility is captured as a maximum distance constraint
between actual and obfuscated positions, at every point in
time. Finally, obfuscated trajectories must remain feasible
in the given environment, e.g., they cannot jump, go
through walls, or follow impracticable paths.

? This work was supported in part by TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA, and in part by the National
Science Foundation under grant CNS-1421122.

Fig. 1. Obfuscation mechanism using edit functions

Recently, Wu et al. (2018) presented a method for syn-
thesizing so-called edit functions that map, in real time,
an actual trajectory to a suitably obfuscated one; Fig. 1
illustrates this obfuscation mechanism. Edit functions are
a generalized version of the insertion functions that are
synthesized in Wu and Lafortune (2014) for the enforce-
ment of opacity, a general information-flow property that
has been studied extensively in the last few years in the
context of partially-observed systems (Jacob et al., 2016).
Edit functions can delete actual system events and/or
insert new fictitious ones (up to a certain bound) when
mapping an actual string of events to an obfuscated one.

We adopt the obfuscation framework of Wu et al. (2018)
and describe its real-time implementation in the context
of a software architecture, written in Python, that first
solves the edit function synthesis problem off-line, and
then makes suitable edit decisions on-line based on real-
time sensor readings of the movements of a user in a pre-
specified region modeled using a discrete grid. (In our
work, all events are observable, and opacity reduces to
to never disclosing visits to secret locations; one can think
of the secret locations as the states that violate opacity
in the observer of the original partially-observed system.)



In Wu et al. (2018), two symbolic implementations of edit
function synthesis are presented and compared. We adopt
the second method, based on using the tool SynthSMV
(Rawlings, 2016). In this method, edit function synthe-
sis is mapped to a supervisory control problem that is
then solved symbolically using SynthSMV, which is based
on the symbolic model-checking solver NuSMV (Cimatti
et al., 2002). We also employ SynthSMV to compute the
actual edit decisions on-line in real time. A visualization
tool is included to display actual and obfuscated positions
in the grid layout.

We demonstrate how to use this software architecture
in an indoor environment and present the results of our
deployment of this technique in a university building. This
deployment occurred in the context of the Enhanced Con-
ference Room Demonstrator project of the TerraSwarm
Research Center (TerraSwarm, 2017). Specifically, we used
two features supported by this demonstrator project:
(i) real-time indoor tracking of the location of a user
using the Acoustic Location Processing System (ALPS)
of Rowe et al. at Carnegie Mellon University, USA (WiSE
Lab, 2017; Lazik and Rowe, 2012), which was deployed
in portions of the first floor of the Clark Kerr Conference
Center on the campus of the University of California at
Berkeley, USA; and (ii) a secure data server called the
Global Data Plane (GDP), which provides services to
IoT devices and apps on smart phones or other devices
for real-time data logging, subscriptions to logs, archival
services, etc. The GDP is being developed by Kubiatowicz
et al. at the University of California at Berkeley, USA
(Swarm Lab, 2017; Zhang et al., 2015) and its goal is
to provide a data-centric “glue” for swarm applications.
In the demonstration, the first floor of the Clark Kerr
Conference Center is modeled using a grid of about 1,500
cells that capture the layout of the floor (walls, doors,
obstacles). Our implementation reads data written in real
time to the GDP by an ALPS app running on a smart
device and results in an obfuscated log that is written in
real time to the GDP for disclosure to the outside world
and display on the visualization tool.

The key features of this demonstration include: (i) the
ability to synthesize an obfuscator (off-line) for a grid
large enough to model a floor of a building consisting of
several rooms; (ii) the ability to make edit decisions (on–
line) based on the synthesized obfuscator, which is stored
symbolically using binary decision diagrams (BDDs); and
(iii) the ability to leverage an indoor localization system
(ALPS) and a data-centric server for swarm applications
(GDP) to implement obfuscation in real time from actual
user movements in the instrumented region.

The remainder of this paper is organized as follows. Section
2 reviews the synthesis technique for the obfuscator. Next,
Section 3 presents our software architecture for real-time
obfuscation, along with simulation results for real-time
obfuscation. The demonstration of our software with live
readings from a university building is presented in Section
4. Finally, Section 5 compares our work with related
approaches in the literature, and Section 6 concludes the
paper.

2. SYNTHESIS OF OBFUSCATOR

2.1 Obfuscation by Edit Functions

We start by describing the control problem that must be
solved off-line to calculate a suitable obfuscator for a given
system model (which may be a grid, as in our exam-
ple problem, or a more general model). The obfuscation
methodology that is demonstrated in this paper has its
theoretical foundations in Wu et al. (2018), where an edit
function is added as an output interface between the sys-
tem and the external observers of its behavior (legitimate
or malicious), as depicted in Fig. 1. An edit function, or
obfuscator in the context of this paper, is allowed to erase
genuine system outputs and/or insert some fictitious ones,
thereby producing an obfuscated output stream that is
seen by the external observers. The necessary technical
results for obfuscator synthesis are presented in Wu et al.
(2018), and will only be summarized here.

The system model is a discrete-event model, either an
automaton or a labeled transition system, where the labels
on the transitions between the discrete states are the
events, which correspond to transitions from one grid cell
to another in the grid model of this paper. Since the
external observers track the system state (cell location in
the grid) based on the sequence of events emitted by the
edit function, the role of the edit function is to perform
insertions of fictitious events or deletions of actual events
(i.e., moves from one grid cell to another) in such a manner
that the obfuscated trajectory never visits any of the secret
states (some grid cells that are pre-specified). However,
the obfuscated trajectory must still be a feasible one in
the system model; it cannot go through walls for example
or jump over grid cells. The result of obfuscation is that
the true system state will be different from the observed
system state (i.e., the “fake” or obfuscated one). Practical
considerations might dictate that the difference between
the obfuscated state and the true one should be within
some bound, under some quantitative measure. In our
problem, we quantify such a condition by the number
of (valid) moves between the true cell (where the agent
is located) and the obfuscated one (as estimated by the
external observers).

Synthesizing an edit function that satisfies all of the
above conditions is a “reactive synthesis problem with
a plant model”, as described in Ehlers et al. (2017) for
instance. In Wu et al. (2018), this problem is solved
by formulating a game between the edit function and
the system (acting as “environment”). One must find, if
it exists, a winning strategy for the edit function that
works under all system behaviors (worst case analysis).
The construction of that game and the identification of
a winning strategy are described in detail in Wu et al.
(2018). In the next section, we focus on the implementation
aspects of this synthesis problem as a supervisory control
problem (Ramadge and Wonham (1987); see, e.g., Ehlers
et al. (2017) for an introduction), which are relevant to the
present demonstration paper.

2.2 Symbolic Implementation of Obfuscation

As was mentioned in Section 1, we selected the symbolic
implementation of obfuscation based on SynthSMV, one of



the two symbolic implementations analyzed in Wu et al.
(2018). Its scalability properties were the primary reason
for this selection. In short, the system is modeled as a
deterministic finite labeled transition system, additional
variables are added to the system model to represent the
obfuscation decisions, and the desired behavior is formu-
lated as a computation tree logic (CTL) specification;
the resulting supervisory control problem has a unique
solution that yields the obfuscator. We now discuss this
implementation in more detail.

The problem of synthesizing an edit function that simul-
taneously satisfies the three conditions of secrecy, feasi-
bility, and utility, is formulated as a supervisory control
problem, where system outputs are uncontrollable events
of the “plant”, and edit function actions (here, insertions
or deletions) are the controllable events that are to be
enabled or disabled by the “supervisor”. In this manner,
the solution of the supervisory control problem suitably
emulates the game-like structure of Wu et al. (2018) 1 ,
which embeds all valid edit actions when the edit function
“plays against” the system, which in turn acts as environ-
ment or adversary.

More specifically, in our formulation, the plant model
for the supervisory control problem captures all allowed
transitions in the system dynamics. We need to track two
state variables over these dynamics: the actual state of
the user and its obfuscated state. An additional Boolean
variable keeps track of whose turn it is to move: the user
or the obfuscator. The utility constraint is assumed to be
in the form of a maximum distance or budget (in L1-norm
in the case of a grid model), denoted by W , between the
actual and obfuscated states. For a solution to exist, this
budget may need to be adjusted depending on the system
model.

As described in Wu et al. (2018) (cf. Section 5.2), the
specification for supervisor synthesis is a CTL formula of
the form

AG(φ1 ∧ φ2 ∧ EF(φ3))

where φ1 captures the secrecy constraint (the obfuscated
state should never be a secret location), φ2 captures the
utility constraint (the budget must always be satisfied),
and φ3 captures the ability of the user to make a move in
the game. The first two terms are invariance constraints,
and do not include any additional temporal operators.
The latter reachability constraint EF(φ3) ensures that the
obfuscator never encounters a situation where it has no
valid move, which would result in stopping the game and
preventing the user from ever moving again. Finally, in
our implementation, the number of moves reported by
the obfuscator between any two user moves is bounded
by variable K, typically chosen to be from 2 to 5 in our
experiments.

As argued in Ehlers et al. (2017), for a deterministic
plant model (as we have here) and for a specification
of the form AG(EF(p)), there exits a unique maximally-
permissive state-based supervisor; this extends naturally
to specifications with additional invariance requirements,
as in our case. The supervisor is a function that maps each
state to the set of valid insertions (which could contain the

1 This game-like structure was inspired by that of Wu and Lafortune
(2014) for the case of insertion actions only.

empty string, corresponding to a deletion) that may follow
the previous move of the user and precede its next move.
In our demonstrations, we randomly selected one insertion
from that set whenever the obfuscator played.

Figure 2 shows the typical steps involved in using
SynthSMV. The system is modeled using the SMV mod-
eling language (specifically, the same input language as
NuSMV version 2.6.0 is supported), along with the defi-
nition of which events are controllable and uncontrollable,
and the specification is written in CTL. Controllability
of inputs and synthesis specifications are extensions to
NuSMV’s modeling language. SynthSMV can return either
the supervisor itself or the set of states that satisfy the
specification when that supervisor is applied, each either as
an explicit set or as an expression in SMV syntax. Figure 2
also includes an example with four states (Q = {1, 2, 3, 4}),
two events (Σ = {α, β}), one of which is controllable
(Σc = {α}), and a reachability specification. SynthSMV
can also be called with a previously-computed supervisor
and a given state to produce the set events allowed by the
supervisor in that state. This can also be combined with
NuSMV’s interactive mode to simulate a system without
having to repeatedly rebuild the symbolic representation,
thereby allowing the supervisor to be applied to control a
live system.

SynthSMV

NuSMV

Uncontrolled system:

1

2 3

4

α, β
α

β

α

α, β

Specification:
AG(EF(q = 2))

Controlled system:

1

2 3

4

α, β α, β

β

α

α, β

Controllable states:
Q∗ = {1, 2, 3}

Supervisor:

Γ(q) =

{
q = 3 {β}
else {α, β}

Fig. 2. Interaction with SynthSMV

3. REAL-TIME IMPLEMENTATION OF
OBFUSCATOR

In the previous section, the general procedure to synthesize
an obfuscator (when one exists) was presented. We now
present a software architecture, written in Python, that
synthesizes an obfuscator and uses it to make obfuscation
decisions in response to live readings. We restrict our
attention to agents moving in a grid world, but the



framework could easily be extended to other obfuscation
scenarios.

In order to implement real-time obfuscation, we employ
two key tools. First, we adopt a data-centric system for IoT
applications, the GDP. The GDP infrastructure was pre-
sented in Zhang et al. (2015), and it fits the requirements
of IoT applications in a natural way. By using such in-
frastructure, we are able to perform real-time obfuscation,
disclosing obfuscated positions to third party applications
(e.g., Location-Based Services). In addition to the GDP,
we leverage SynthSMV not only to compute the obfusca-
tor, but also as a look-up table using the pre-computed
obfuscator. The software architecture is shown in Fig. 3,
where the obfuscation application reads/writes informa-
tion from/to the GDP, and makes queries to SynthSMV.
We explain below each of the components and its proper-
ties.

3.1 Global Data Plane (GDP)

The GDP is an infrastructure developed to address prob-
lems due to the increase of IoT applications. In Zhang
et al. (2015), the authors described the disadvantages
of connecting smart devices directly to the cloud. To
overcome such disadvantages, a data-centric abstraction
layer is inserted between IoT applications and the un-
derlying existing computing platforms, e.g., Cloud, Fog,
and Gateways (Zhang et al., 2015). Such abstraction is
focused around the transportation, the conservation, and
the protection of the information.

The foundation of the GDP is the idea of a secure, single-
writer log. Each log has a single authorized writer, which
is enforced by a writer authentication key. The key also
provides authenticity and integrity to the log. In an IoT
application, each sensor or computational element has its
unique log in the GDP. Moreover, the GDP supports
multiple simultaneous readers, each of which must have
the appropriate decryption key to decrypt the data. In
conclusion, the GDP provides coherent, scalable, and
robust communication between logs and applications. For
more details of the usage of the GDP, we refer the reader
to Zhang et al. (2015) and Swarm Lab (2017).

In our software infrastructure, we read from and write to
the GDP. Each agent has a position log in the GDP, and
only our application has the key to read it, so that the
exact position of each agent is private information. Our
application then writes a public log to the GDP to publish
the obfuscated position of each agent.

3.2 SynthSMV

SynthSMV can compute an obfuscator to solve the prob-
lem described in Section 2, when one exists. In this sec-
tion, we show how we combine off-line and on-line use of
SynthSMV to implement real-time obfuscation efficiently.

In relation to the off-line case, our software uses SynthSMV
exactly as previously explained in Section 2. Starting
with the actual agent’s mobility model, it constructs an
obfuscator that controls the “fake” agent’s movements.
This obfuscator is stored to later be used by our software
on-line so that we can avoid repeating the costly synthesis
computation.

GDP

robot alice log

robot bob log

Obfuscator 

App

alice obf. log

bob obf. log

Other 

Apps

robot alice

robot bob

A
L
P
S

A
L
P
S

position

position

SynthSMV

Fig. 3. Real-time implementation of obfuscator using the
Global Data Plane (GDP)

Waiting for new 

agents events

GDP sends

 new events

Computes current 

state of model

Query SynthSMV 

for obfuscated 

events

Waiting for SynthSMV 

to return obfuscated 

events

SynthSMV returns

Randomly choose

obfuscated events;

update obfuscated

state

Write obfuscated

agents states 

in the GDP

Fig. 4. Software architecture for entire tool incorporating
Python core, SynthSMV, reading/writing to/from
GDP, and visualization

The on-line usage of SynthSMV is implemented as a
sequence of queries made by our software to SynthSMV.
Before any queries are made, the previously-computed
obfuscator is loaded into SynthSMV. Then, each query
simply asks which events are enabled by the obfuscator
in a particular state. SynthSMV returns the set of all
allowed obfuscation moves from that state of the model.
The advantage of using SynthSMV on-line as a look-up
table is its efficient BDD-based symbolic representation
of the obfuscator. Even when the obfuscator is complex
and has a large state space, SynthSMV can respond to
the queries within one second, which it is fast enough for
real-time applications.

3.3 Obfuscation Application

The obfuscation application is created to manage the data
received from the GDP and the queries to SynthSMV. It
performs a sequential routine as shown in Fig. 4. We are
leaving out the off-line obfuscator computation step, which
we assume was done prior to the sequential steps shown in
Fig. 4.

The first step, the one that triggers all the other steps,
is receiving new position information for the agents from
the GDP. Once all agents have updated their respec-



tive current positions, the application can then begin its
computation. The second step is to update the internal
representation of the agents’ positions in our model. Given
the updated state, our application queries SynthSMV to
receive the set of every move that can be reported without
violating the specification.

At this point, we are in the third step of Fig. 4. As
soon as SynthSMV returns the allowed obfuscated agents’
movements, the application randomly selects one of them.
The obfuscated agents’ positions are updated according to
the selected move, and written to their respective public
logs. After writing to the GDP, the obfuscation application
returns to its first step where it once again awaits the
updates to the agents’ positions.

The obfuscation application also includes a visualization
tool. The main goal to embed a visual component in
our application is mainly to demonstrate the difference
between trajectories generated by an agent and its obfus-
cated trajectory. Figures 5 and 7 are examples of the visual
component.

3.4 Simulation Results

To show the applicability of our software architecture, we
generated simulated trajectories of agents moving on the
first floor of a university building. We generated different
scenarios by modifying the size of the grid, the secret
location, the budget W , and the bound K.

Figure 5 shows one agent moving in the grid world,
along with its obfuscated trajectory. The bold black lines
represent walls which the agent cannot pass through. The
secret location is represented by the red grid locations.
Moreover, we considered the budget value W = 3 and
the bound value K = 3. For this scenario, the off-line
SynthSMV query took 5 hours and 12 minutes on a server
with an Intel Xeon CPU E5-1650 (3.50GHz) and 64GB
of memory running Linux. The large computation time is
due to a combination of the large size of the grid, close to
1500 cells, with the walls obstacles.

In order to simulate real-time obfuscation, the agent’s
positions are updated periodically in the GDP. The tra-
jectories in Fig. 5 represent both the real (dark blue) and
obfuscated (light blue) agent’s positions. In the building,
there are two doors that lead to the patio area. In the
scenario of Fig. 5, one of these doors is secret. Therefore,
any time the agent goes through the secret door, the
obfuscated trajectory has to pass through the other one,
as seen in Fig. 5.

4. DEMONSTRATION IN INDOOR ENVIRONMENT

The architecture presented in Fig. 3 assumes that the
agents’ positions are continually written in their respective
logs. However, we did not assume any specific system,
and instead left the architecture open to any type of
agent localization method (e.g., GPS, video input, etc.).
We now present a specific demonstration of indoor real-
time obfuscation. First, we discuss an indoor localization
methodology used as input to our software and then we
present the results of real-time obfuscation for a specific
scenario for the first floor of a university building.

PATIO

THEATER H
A

L
L
W

A
Y

RESTROOM

ROOM 02

ROOM 01

ENTRANCE

Fig. 5. Grid mapping of the first floor of the Clark Kerr
Conference Center at UC Berkeley; the secret location
(in red) is one of the doors; the trajectories of the real
(obfuscated) agent are shown in dark (light) blue

4.1 ALPS — Acoustic Location Processing System

The Acoustic Location Processing System (ALPS) was
developed by Lazik and Rowe (2012). It uses a com-
munication scheme in the ultrasonic audio bandwidth to
provide sub-meter accurate indoor localization of mobile
devices such as smartphones and tablets (Lazik and Rowe,
2012; WiSE Lab, 2017). The communication scheme is
imperceptible to humans, since it exploits a bandwidth
space above the human hearing frequency spectrum, yet
perceptive by the mobile devices.

The tracking provided by ALPS uses off-the-shelf audio
speakers placed in strategic positions to localize the mobile
devices. Therefore, the area in which tracking will be
performed needs to first be instrumented. Figure 6a shows
an ALPS beacon placed in the university building from
our demonstration, and Fig. 6b shows the hallway that
was instrumented with ALPS beacons in our obfuscation
scenario. Four beacons were placed in the hallway, one
at each corner; this allowed accurate position information
within the hallway to be published to the GDP every
second using a tablet device.

4.2 Demonstration

The instrumented section of the hallway, shown in Fig. 6b,
corresponds to grid positions 15 ≤ x ≤ 20 and 15 ≤ y ≤ 25
in Fig. 5. Given that the agent can only be tracked
in the hallway, we simplify the previous grid model of
Fig. 5. The model still considers one agent moving in the
grid world, but the secret location and the grid layout
are now defined as in Fig. 7. The coordinates in Fig. 7
matched the coordinates instrumented by ALPS, where
the instrumented hallway is 4 meters wide and 25 meters
long (we partially show the hallway grid).

The agent walks freely in the hallway, constrained by a
table positioned in the middle of the corridor. The table is



(a) ALPS device — Photo cour-
tesy of Niranjini Rajagopal and
Anthony Rowe (b) ALPS-instrumented

hallway on the first floor of
the Clark Kerr Conference
Center

Fig. 6. Photographs the hardware and building used in the
live demonstration

modeled as obstacle locations (in gray) in Fig. 7. Based on
the location of the table, we defined as the secret location
the entire space left to the table (in red), meaning that an
outsider observer should never know when the agent walks
on the left side of the table (e.g., the agent does not want
others to know when it is eating).

With the model defined, we set the free parameters W and
K such that there exists an obfuscator that satisfies the
defined constraints. In this example, we selected W = 3
and K = 3 to obtain a solution to the obfuscation problem.

Next, using the architecture of Fig. 3, a single agent moved
freely in the instrumented hallway. The agent’s position
was recorded by ALPS and published to the GDP. Simul-
taneously, the Obfuscator App created an obfuscated tra-
jectory based on the agent’s actual trajectory, as explained
in the previous section.

We present one of agent’s trajectories in Fig. 7. While
the agent (dark blue) walks within the secret region,
its obfuscated trajectory (light blue) indicates that the
agent never enters the secret region. The numbers in
the trajectory reflect the agent’s movements and the
respective obfuscated movements. Therefore, there exist
repeated numbers in the obfuscated trajectory given that
the obfuscator could move up to three times (K = 3)
before the next agent update.

It is interesting to compare the obfuscated actions num-
bered by 8 with those numbered by 5. We see that the
obfuscated actions 8 lead the obfuscator to the maximum
of its allowed movements (K = 3). It does so that it pre-
pares itself for an unknown future of the agent. After move
8, the agent is located in the boundary between secret
and non-secret locations. Therefore, move 8 prepares the
obfuscated trajectory for any possible future movement of
the agent. In contrary, movement 5 does not need to deal
with such a situation. Given that the agent will remain in
the secret location for any action it chooses after move 5,
the obfuscator needs only one action to prepare itself for
the future actions of the agent.

We remark that by using SynthSMV, the obfuscated
movements are calculated within a second, before the
agent updates its position. Furthermore, the trajectory in

1

2

3

4 5

6
7

8

9

10

1 1 2

2

2

3

4

5
6

7

8

9

10

88

10

Fig. 7. Actual and obfuscated trajectories overlaid on the
grid model, using real-time sensor measurements

dark blue is created as a private log in the GDP, and it
is only accessible by the Obfuscator App. However, the
obfuscated one is published as a public log.

5. RELATED WORK

The objective of this paper was to demonstrate real-time
obfuscation policies that ensure privacy and utility. Obfus-
cation techniques for location privacy were introduced by
Duckham and Kulik (2005a,b). The idea of obfuscation
is to degrade the information of a person’s location in
order to obtain privacy. In the work of Duckham and
Kulik (2005a), the information is degraded in an impre-
cise manner such that the privacy of the individuals is
maintained. However, the study is only made for single
queries and a dynamic query model is not studied. The
work of Ardagna et al. (2011) strengthened the prior work
by providing quantitative measurements about the quality
of the obfuscation. A downside of these techniques is that
they perform probabilistic operations, which could provide
inconsistencies when analyzing a dynamical scenario (e.g.,
agents moving through obstacles). Our model-based ap-
proach guarantees that such inconsistencies will not occur.

Another related research area is that of differential privacy.
Indeed, the attacker model and the problem formulation
presented here are inspired by work on differential privacy.
In the work by Dwork (2006), the differentially-private
mechanism does not specify any utility guarantees. The
first work to include utility guarantees in differentially-
private mechanisms was the work of Ghosh et al. (2012).
In this context, our obfuscator can be viewed as a discrete
logic counterpart of differentially-private mechanism with
utility constraints.

The work of O’Kane and Shell (2015) is closely related
to ours. They also investigated privacy and utility re-
quirements in a model-based manner. However, they spec-
ified theses constraints as pairwise requirements on states,
where privacy is transformed to state indistinguishabil-



ity, and utility to state distinguishability. The solution is
given via graph coloring. In our work, the constraints are
described as temporal logic specifications. Moreover, the
solution with the obfuscation mechanism is more general
than the one provided by O’Kane and Shell (2015), as it
allows modification of the system’s output events.

6. CONCLUSION

We have described how to perform obfuscation, a form of
opacity enforcement based on editing the output behavior
of a system, in real time for systems with large state spaces.
This includes the off-line synthesis of a suitable obfuscator
and its on-line implementation. We have demonstrated
our approach in the context of location privacy in an
indoor environment where the user’s location is tracked
continuously by an acoustic positioning system and where
an obfuscated position that hides visits to secret locations
must be disclosed in real time to the outside world via
a data server. Overall, we believe this demonstration
shows the practicality of achieving indoor location privacy
using the opacity enforcement mechanism of edit functions
developed for discrete event systems.

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the work of Niranjini
Rajagopal and Patrick Lazik in setting up the ALPS
system in the Clark Kerr Conference Center, and the
help of Nitesh Mor in working with the GDP. We also
thank all the members of the Enhanced Conference Room
Demonstrator project in the TerraSwarm Research Center.

REFERENCES

Ardagna, C.A., Cremonini, M., di Vimercati, S.D.C., and
Samarati, P. (2011). An obfuscation-based approach
for protecting location privacy. IEEE Transactions on
Dependable and Secure Computing, 8(1), 13–27.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F.,
Pistore, M., Roveri, M., Sebastiani, R., and Tacchella,
A. (2002). NuSMV 2: An OpenSource tool for symbolic
model checking. In Computer Aided Verification, Lec-
ture Notes in Computer Science, 359–364. doi:10.1007/
3-540-45657-0\ 29.

Duckham, M. and Kulik, L. (2005a). A Formal Model of
Obfuscation and Negotiation for Location Privacy, 152–
170. Springer Berlin Heidelberg, Berlin, Heidelberg.

Duckham, M. and Kulik, L. (2005b). Simulation of
Obfuscation and Negotiation for Location Privacy, 31–
48. Springer Berlin Heidelberg, Berlin, Heidelberg.

Dwork, C. (2006). Differential privacy. In Proceedings of
the 33rd International Conference on Automata, Lan-
guages and Programming - Volume Part II, ICALP’06,
1–12. Springer-Verlag, Berlin, Heidelberg.

Ehlers, R., Lafortune, S., Tripakis, S., and Vardi, M.
(2017). Supervisory control and reactive synthesis:
a comparative introduction. Discrete Event Dynamic
Systems: Theory and Applications, 27(2), 209–260.

Ghosh, A., Roughgarden, T., and Sundararajan, M.
(2012). Universally utility-maximizing privacy mecha-
nisms. SIAM Journal on Computing, 41(6), 1673–1693.

Jacob, R., Lesage, J., and Faure, J. (2016). Overview of
discrete event systems opacity: Models, validation, and
quantification. Annual Reviews in Control, 41, 135–146.

Lazik, P. and Rowe, A. (2012). Indoor pseudo-ranging of
mobile devices using ultrasonic chirps. In Proceedings of
the 10th ACM Conference on Embedded Network Sensor
Systems, SenSys ’12, 99–112. ACM, New York, NY,
USA.

O’Kane, J.M. and Shell, D.A. (2015). Automatic design
of discreet discrete filters. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), 353–
360.

Ramadge, P. and Wonham, W. (1987). Supervisory control
of a class of discrete event processes. SIAM J. Control
& Optimization, 25(1), 206–230.

Rawlings, B.C. (2016). Discrete Dynamics in Chemical
Process Control and Automation. Ph.D. thesis, Carnegie
Mellon University. URL http://repository.cmu.edu/
dissertations/862/.

Swarm Lab (2017). Global Data Plane. https://
swarmlab.eecs.berkeley.edu/projects/4814/
global-data-plane. Accessed: 2017-11-06.

TerraSwarm (2017). TerraSwarm Research Center. https:
//www.terraswarm.org. Accessed: 2017-11-06.

WiSE Lab (2017). Acoustic Location Processing Sys-
tem. http://wise.ece.cmu.edu/redmine/projects/
alps/wiki. Accessed: 2017-11-06.

Wu, Y.C. and Lafortune, S. (2014). Synthesis of insertion
functions for enforcement of opacity security properties.
Automatica, 50(5), 1336 – 1348.

Wu, Y.C., Raman, V., Rawlings, B.C., Lafortune, S., and
Seshia, S.A. (2018). Synthesis of obfuscation policies
to ensure privacy and utility. Journal of Automated
Reasoning, 60(1), 107–131.

Zhang, B., Mor, N., Kolb, J., Chan, D.S., Goyal, N., Lutz,
K., Allman, E., Wawrzynek, J., Lee, E., and Kubiatow-
icz, J. (2015). The cloud is not enough: Saving IoT from
the cloud. In Proceedings of the 7th USENIX Confer-
ence on Hot Topics in Cloud Computing, HotCloud’15.
USENIX Association, Berkeley, CA, USA.


