
Stealthy Deception Attacks for Cyber-Physical Systems

Rômulo Meira Góes, Eunsuk Kang, Raymond Kwong and Stéphane Lafortune

Abstract— We study the security of Cyber-Physical Systems
(CPS) in the context of the supervisory control layer. Specif-
ically, we propose a general model of a CPS attacker in the
framework of Discrete Event Systems (DES) and investigate the
problem of synthesizing an attack strategy for a given controlled
system. Our model captures a class of deception attacks, where
the attacker has the ability to modify a subset of sensor readings
and mislead the supervisor, with the goal of inducing the
system into an undesirable state. We introduce a new type
of a bipartite transition structure, called Insertion-Deletion
Attack structure (IDA), to capture the game-like interaction
between the supervisor and the environment (which includes
the system and attacker). This structure is a discrete transition
system that embeds information about all possible attacker’s
stealthy actions, and all states (some possibly unsafe) that
become reachable as a result of those actions. We present
a procedure for the construction of the IDA and discuss its
properties. Based on the IDA, we discuss the characterization
of successful stealthy attacks, i.e., attacks that avoid detection
from the supervisor and cause damage to the system.

I. INTRODUCTION

In this paper, we are concerned with the problem of
synthesizing an attack strategy at the supervisory control
layer of a given Cyber-Physical Systems (CPS). Previously,
some efforts were made in classification and modeling of
cyber-attacks, assuming certain intelligence on the part of
the attacker; see, e.g., [1], [2]. Our focus is a special type
of attacks, called deception attacks, which are characterized
by some type of manipulation of the sensor measurements
received by the controller/supervisor. Given that we are
investigating cyber-attacks at the supervisory control layer
of a CPS, we use the formalism of Discrete Event Systems
(DES) to model both the attacker’s behavior as well as the
CPS behavior itself. This allows us to leverage the concepts
and techniques of the theory of supervisory control of DES.
Several recent works have adopted similar approaches to
study cyber-security issues in CPS; see, e.g., [3], [4], [5],
[6].

Previous works [3], [4], [5] on intrusion detection and
prevention of cyber-attacks using discrete event models were
focused on modeling the attacker as faulty behavior and their
corresponding methodologies were relying on fault diagnosis
techniques. Recently, [7] proposed a framework similar to the

This work was supported in part by the U.S. National Science Foundation
grant CNS-1421122.

Rômulo Meira Góes, Eunsuk Kang, and Stéphane Lafortune
are with Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48105, USA
{romulo,eskang,stephane}@umich.edu

Raymond Kwong is with the Department of Electrical Engineering and
Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
kwong@control.utoronto.ca

one adopted in our paper, where they formulate a model of
data deception attacks. However, our methodology is more
general than that in [7], as it allows arbitrary insertions
or deletions of events. Furthermore, in [7], a normality
condition is necessary to create the attack strategy; this
condition is imposed to obtain the so-called supremal con-
trollable and normal language under the attack model. In
our approach, this condition is relaxed, and normality is not
necessary to create an attack strategy, thus allowing a larger
class of attacks strategies. In [6], the authors presented a
study of supervisory control of DES under attacks. They
introduced a new notion of observability which captures the
presence of an attacker. However, their study is focused
on the supervisor’s viewpoint and they do not develop a
methodology to design attack strategies. They assume that
the attacker’s model is given and they develop their results
based on that assumption. In that sense, the work [6] is closer
to robust supervisory control and it is complementary to
our work. Several prior works considered robust supervisory
control under different notions of robustness [8], [9], [10],
[11], but they did not study robustness against attacks. In the
cyber-security literature, some works have been carried out
in the context of discrete event models, especially regarding
opacity and privacy/secrecy properties [12], [13], [14], [15].
These works are concerned with studying information release
properties by the system, and they do not address the impact
of an intruder over the physical parts of the system.

In this paper, we propose a model of deception attacks
at the supervisory control layer and introduce the general
problem of synthesis of successful stealthy deception attacks.
We assume an attacker with (i) knowledge of both the
system and its supervisor and (ii) ability to affect the sensor
information that is received by the supervisor. The goal of
the attacker is to induce the supervisor into allowing the
system to reach an unsafe state, thereby causing damage to
the system. The set of unsafe states is assumed to be pre-
specified. The methodology that we develop for investigating
the synthesis of such attacks is inspired by the work in
[16], [17], [15]; as in these works, we employ a bipartite
discrete structure to model the game-like interaction between
the supervisor and the environment (system and attacker).
We call our new structure the All Stealthy Insertion-Deletion
Attack structure (or IDA). By construction, the IDA embeds
all possible scenarios where the attacker inserts or deletes
some subset of observable events without being noticed by
the supervisor. The IDA, once constructed, serves as the basis
for solving the synthesis problem.

By providing a general analysis and synthesis frame-
work, our goal is to allow CPS engineers to detect and

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
December 12-15, 2017, Melbourne, Australia

978-1-5090-2872-6/17/$31.00 ©2017 IEEE 4224

address potential vulnerabilities in their controlled systems.
To demonstrate our approach, we performed a case study on
the security of a realistic, fully operational water treatment
testbed investigated in prior related research [18].

The remainder of this paper is organized as follow. Section
II introduces necessary background and some notations. Sec-
tion III formalizes the attack model as well as the problem
statement. Section IV describes the IDA structure and its
properties. Section V briefly describes results in the case
study. Lastly, Section VI provides conclusions and directions
for future work.

II. MODELING FORMALISM

We use the formalism of DES modeled as finite state
automata. A Finite-State Automaton G is defined as a tuple
G = (X ,Σ,δ ,x0), where
• X is a finite set of states;
• Σ is a finite set of events;
• δ : X×Σ→ X is a partial transition function;
• x0 ∈ X is the initial state.

The function δ is extended in the usual manner to domain
X×Σ∗. The language generated by G is defined as L (G) =
{s ∈ Σ∗|δ (x0,s)!}, where ! means “is defined”. Language
L (G) is considered as the uncontrolled system behavior,
since it includes all possible executions of G. We assume that
a supervisor SP was designed to enforce some safety and/or
nonblockingness (or liveness) property on G. In the notation
of the theory of supervisory control of DES initiated in
[19], the resulting controlled behavior is a new DES denoted
by SP/G, resulting in the closed-loop language L (SP/G),
defined in the usual manner [20]. SP dynamically enables
and disables the controllable events of G (i.e., the actuators),
on the basis of the observable events of G that it tracks (from
the sensors of G). The limited actuation capabilities of G are
modeled by a partition in the event set Σ = Σc∪Σuc, where
Σuc is the set of uncontrollable events and Σc is the set of
controllable events. The set of admissible control decisions
is defined as Γ = {γ ∈ 2Σ : Σuc ⊆ γ}, where admissibility
guarantees that a control decision will never disable an
uncontrollable event. In addition, when the system is partially
observed due to the limited sensing capabilities of G, the
event set is also partitioned into Σ = Σo ∪Σuo, where Σo is
the set of observable events and Σuo is the set of unobservable
events. Based on this second partition, the projection function
P : Σ∗→ Σ∗o is defined as :

P(ε) = ε and P(se) =

{
P(s)e if e ∈ Σo

P(s) if e ∈ Σuo
(1)

The inverse projection P−1 : Σ∗o→ 2Σ∗ is defined as P−1(t) =
{s ∈ Σ∗|P(s) = t}. In addition, ΓG(S) is defined as the set of
active events at the subset of states S ⊆ X of automaton G,
given by:

ΓG(S) := {e ∈ Σ|(∃u ∈ S) s.t. δ (u,e)!} (2)

The supervisor SP makes its decisions based on the string
of observable events that it observes. Formally, a partially

0 1

3 4

a

b b

b

c

2
c

(a) G

A B

C D

a

b b

b

c

(b) Supervisor R1

Fig. 1: System automaton along with its supervisor

observation supervisor is a function SP : P(L (G)) → Γ.
Without loss of generality, we assume that SP is realized as
a deterministic automaton R = (Q,Σ,µ,q0) such that ∀q∈Q,
if e ∈ Σuo is an enabled unobservable event at state q by SP,
then we define µ(q,e) = q as is customary in a supervisor
realization (cf. [20]). This means that the supervisor can only
change its control decision (by updating the state in R) upon
the occurrence of an observable event; yet, its active event set
is the actual control decision issued to the system, including
the enabled unobservable events. More explicitly, the current
control decision applied to G is ΓR({q}), where ΓR is set of
active events at state q of R. Thus, while the domain of events
in R is Σ not Σo, its transitions will only be driven by the
strings of observable events that it receives from the attacker.

We also define R̃ = (Q̃,Σ, µ̃,q0), where Q̃ = Q∪{dead},
and µ̃ is defined by completing the partial transition function
µ as (∀q∈Q) (∀e∈ [Σo\ΓR({q})]) µ̃(q,e) = dead. The state
“dead” will allow us to capture when the controlled system
goes “out of range” of the closed-loop behavior for which
SP was designed; at the same time, this state will capture
when the supervisor detects that it is under attack.

Example II.1. Consider the system G represented in Fig.
1(a). Let Σ = Σo = {a,b,c} and Σc = {b,c}. Figure 1(b)
shows the realization R1 of a supervisor SP1 that was
designed for G. In this case, the language generated by
L (SP1/G) guarantees that state 2 is unreachable in the
controlled behavior.

Next, let us consider that Σo = {a,b} and Σc = {b,c}. A
realization R2 of a supervisor SP2 is shown in Fig. 2. The
controlled behavior remains the same as the previous case.

A B

C D

a

b b

b

c
b

a

Fig. 2: Supervisor R2

For convenience, we define two operators that will be used
in this paper. The unobservable reach of the subset of states
S⊆ X under the subset of events γ ⊆ Σ is given by:

URγ(S) := {x ∈ X |(∃u ∈ S)(∃e ∈ (Σuo∩ γ)∗ s.t. x = δ (u,e)}
(3)

The observable reach of the subset of states S⊆ X given the

4225

execution of the observable event e ∈ Σo is defined:

Nexte(S) := {x ∈ X |∃u ∈ S s.t. x = δ (u,e)} (4)

III. PROBLEM STATEMENT

In this section, we formulate the Stealthy Insertion-
Deletion Sensor Attack Problem. Let us first define how
an attacker interacts with the controlled system. Figure 3

Fig. 3: Closed loop system under Deception Attack

shows a controlled system under attack, where the attacker
intervenes in the communication channel between the plant’s
sensors and the supervisor. Specifically, the attacker has
the ability to observe the same observable events as the
supervisor. Moreover, we assume that the attacker possesses
the ability to alter some of the sensors readings in this
communication channel. By altering, we mean that it may
insert or delete some subset of sensor readings sent to the
supervisor; this subset is defined as the compromised event
set Σa ⊆ Σo. Formally, we model an attacker with such
capabilities as a string edit function.

Definition III.1. Given a system G and a subset Σa ⊆ Σo, an
attacker is defined as a function fA : P(L (G))×(Σo∪{ε})→
Σ∗o s.t. fA satisfies the following constraints:
• fA(ε,ε) ∈ Σ∗a;
• ∀s ∈ P(L (G)), e ∈ Σo\Σa: fA(s,e) ∈ {e}Σ∗a;
• ∀s ∈ P(L (G)), e ∈ Σa: fA(s,e) ∈ Σ∗a.

The function fA captures a general model of deception
attack. Given the past output string s of G and observing
a new event e, the attacker may choose to edit e if it
belongs to Σa. The first case in the above definition gives
an initial condition for an attack. The second case constrains
the attacker to be unable to erase e when e is outside of Σa.
However, the attacker may insert an arbitrary string t ∈ Σ∗a
after the occurrence of e. Lastly, the third case in Definition
III.1 means event e ∈ Σa is edited to some string t ∈ Σ∗a,
capturing the deletion of e as well as the insertion of t. Note
that in this third case: (i) t may be equal to e, allowing the
attacker to leave the event unmodified if it chooses to do
so; (ii) e may be the first event of t, meaning that e is not
deleted.

For convenience, let us define a string-based edit (par-
tial) function f̂A : P(L (G))→ Σ∗o recursively as f̂A(te) =
f̂A(t) fA(t,e), and f̂A(ε) = fA(ε,ε).

The existence of an attacker in the controlled system
induces a new controlled language. More specifically, SP
and f̂A together effectively generate a new supervisor SA
for system G. Formally, for any s ∈ P(L (G)), SA(s) =
[SP◦ f̂A(s)], from which a new controlled language L (SA/G)
is constructed (in the usual manner in supervisory control

theory). The composition operation ◦ captures the new edited
observed string that now drives SP in the presence of the
attacker.

Next, let us consider the objective for an attacker. We
assume that the system G contains a set of critical un-
safe states defined as Xcrit ⊂ X such that ∀x ∈ Xcrit ,(∀s =
e1...en ∈L (G) s.t. δ (x0,s) = x∧|s|= n)(∃i∈ {1, ...,n−1}):
ei+1 /∈ SP(Po(e1...ei)). In general, not all states reached by
strings of G that are disabled by SP are critically unsafe.
In practice, there will be certain states among those that
force the supervisor to go “out of range” that correspond
to physical damage to the system, such as “overflow” states
or “collision” states, for instance. Similar notions of critical
unsafe states have been used in other works, e.g., [21],
[4]. Therefore, the objective of the attacker is to force the
controlled behavior under attack L (SA/G) to reach any state
in Xcrit . At the same time, the attacker does not wish to be
detected by SP, meaning that realization R̃ should never enter
the state “dead”.

Problem III.1 (Synthesis of Stealthy Deception Attacks).
Given a system G, a supervisor SP realized as an automaton
R̃, and a set of compromised events Σa ⊆ Σo, synthesize
an attacker fA such that it generates a controlled language
L (SA/G) that satisfies:

1. ∀s ∈L (SA/G), f̂A(P(s)) is defined;
2. ∀s ∈L (SA/G), f̂A(P(s)) ∈ P(L (SP/G));

3(a). ∃s ∈ L (SA/G), s.t. (∀t ∈ [P−1(P(s)) ∩ L (G)])
δ (x0, t) ∈ Xcrit .

In this case, we say that fA is a strong attacker. We
additionally define the notion of a weak attacker as follows:

3(b). ∃s ∈ L (SA/G), s.t. (∃t ∈ [P−1(P(s)) ∩ L (G)])
δ (x0, t) ∈ Xcrit .

In the formulation of the above problem, the attacker
function needs to be well defined for all projected strings
in the modified controlled language P(L (SA/G)). Condition
2 guarantees the stealthy behavior of the attacker, meaning
any string in P(L (SA/G)) should be modified to a string
within the original controlled behavior. In this manner, R̃
never reaches state “dead”. Lastly, condition 3 exploits the
reachability of critical states, where condition 3(a) is a strong
version of the problem. In the strong case, the attacker is sure
that the system has reached a critical state if string s occurs
in the system. Condition 3(b) is a relaxed version, where the
attacker is not sure if a critical state was reached, although
it could have been reached. Both variations of condition 3
guarantee the existence of at least one successful attack,
namely, when string s occurs in the new controlled behavior.

IV. ALL STEALTHY INSERTION-DELETION ATTACKS

A. Definition

The All Stealthy Insertion-Deletion Attack structure (IDA)
is an extension of the bipartite transition structure presented
in [16]. The IDA captures the game between the environment
and supervisor considering the possibility that a subset of
the sensor network channels may be compromised by a

4226

malicious attacker. Consequently, the IDA must be able to
capture the difference between the actual information from
the system output and the information observed by the
supervisor, where the latter is induced by the attacker when
it provides the supervisor with false sensor events. In order
to capture this difference, we define an information state IS
as a pair IS ∈ 2X× Q̃, and the set of all information states as
I = 2X × Q̃. The first element in IS represents the correct IS,
i.e., the true information state of the system, as seen by the
attacker for the actual system outputs. The second element
represents the supervisor’s state, which is the current state
of its realization based on the edited string of events that it
receives. Recall that Σa is the set of compromised events, and
we call the events in Σ\Σa uneditable. In order to construct
the IDA structure, let Σi

a = {ei| e∈ Σa} be the set of inserted
events and Σd

a = {ed | e ∈ Σa} be the set of deleted events.
Note that, Σi

a and Σd
a are disjoint, and both are disjoint with

Σa. For convenience, we also define Σe
a =Σi

a∪Σd
a to be the set

of edited events. We are using these notations for clarity of
the methodology; from the supervisor’s point of view, ei = e
and ed = ε , ∀ei ∈Σi

a and ∀ed ∈Σd
a . Furthermore, let us define

the projection operation Pe : Σe
a→ Σa as Pe(ei) = Pe(ed) = e.

Definition IV.2. An All Insertion-Deletion Attack structure
(IDA) A w.r.t. G, Σa, and R̃, is a 7-tuple

A = (QS,QE ,hSE ,hES,Σ,Σ
e
a,y0) (5)

where,

• QS ⊆ I is the set of S-states, where S stands for
Supervisor and y1 ∈ 2X and y2 ∈ Q̃ denote the first
and second element of a S-state y, respectively. Thus,
y = (y1,y2);

• QE ⊆ I×Γ is the set of E-states, where E stands for
Environment and where I1(z), I2(z), and Γ(z) denote
the correct IS, the supervisor’s state, and the control
decision components of a E-state z, respectively. Thus
z = (I1(z), I2(z),Γ(z));

• hSE : QS×Γ→QE is the partial transition function from
S-states to E-states, satisfying the following constraint:

hSE(y,γ) := z, where
[I1(z) =URγ(y1)]∧ [I2(z) = y2]∧
[Γ(z) = γ = ΓR({y2})∪Σuc]

(6)

(Note that hSE is only defined for y and γ such that
γ = ΓR({y2})∪Σuc.)

• hES : QE× (Σo∪Σe
a)→QS is the partial transition func-

tion from E-states to S-states, satisfying the following
constraints: for any y ∈QS, z ∈QE and e ∈ Σo∪Σe

a, we
have:

hES(z,e) := y = (y1,y2) (7)

⇒



[y1 = Nexte(I1(z)), y2 = µ̃(I2(z),e)]

if e ∈ Γ(z)∩Σo∩ΓG(I1(z)) (8a)

[y1 = I1(z), y2 = µ̃(I2(z),Pe(e))]

if e ∈ Σ
i
a and Pe(e) ∈ Σa∩ΓR({I2(z)}) (8b)

[y1 = NextPe(e)(I1(z)), y2 = I2(z)]

if e ∈ Σ
d
a and Pe(e) ∈ Γ(z)∩Σa∩ΓG(I1(z))

(8c)

• Σ is the set of events of G;
• Σe

a is the set of edited events;
• y0 ∈ QS is the initial S-state: y0 := ({x0},q0);

Since the purpose of the IDA is to capture the game
between the supervisor and the environment, we use a
bipartite structure to represent each entity. An S-state is
a pair IS containing the correct IS and the supervisor’s
state; it is where the supervisor issues its control decision.
An E-state is a pair IS and a control decision, for which
the environment (system or attacker) selects one among the
observable events to occur. A transition from an S-state to
an E-state represents the updated unobservable reach in the
correct IS together with the current supervisor state and its
control decision. A transition from an E-state to an S-state
represents the “observable reach” immediately following the
execution of the observable event by the environment. In
this case, both the correct IS and the supervisor’s state are
updated. However, the update of the correct IS and of the
supervisor’s state depends on the type of event generated by
the environment: true system event unaltered by the attacker,
(fictitious) event insertion by attacker, or deletion by attacker
of an event just executed by the system. Thus, the transition
rules are split into three cases, described below.

The partial transition function hES is characterized by three
cases: Equations (8a),(8b), and (8c). Equation (8a) is related
to system actions, while Equations (8b) and (8c) are related
to attacker actions. In the case of Equation (8b), the attacker
only inserts events consistent with the control decision of
the current supervisor state (which was enhanced to include
uncontrollable events). In the case of Equation (8c), it only
deletes actual observable events generated by the system. In
the case of Equation (8a), the system generates a feasible
(enabled) event and the attacker lets the event reach the
supervisor intact, either because it cannot compromise that
event, or because it chooses not to make a move.

Example IV.2. As a continuation of Example II.1, let
us construct the IDA structure for the given G and R1,
additionally with Σa = {b} and Xcrit = {2}. Figure 4(a) shows
the resulting structure where oval states represent the S-
states and rectangular states represent the E-states. Moreover,
red states indicates where the supervisor reaches the “dead”
state, green states represent the successful reachability of a
critical states, and brown states represent system deadlocks
(for simplicity, we do not construct the IDA beyond green
states). In this example, the attacker is able to reach, with

4227

certainty, a critical state. However, there exists a trace for
which the attacker might be discovered, due to the occurrence
of uncontrollable and uneditable event a that leads to state
“dead” in the supervisor. Later in this section, we investigate
the elimination of such traces by performing further process-
ing (pruning) on the IDA.

As a second example, we consider again G but with
supervisor R2 from Example II.1, where Σa = {b} and
Xcrit = {2}. The IDA in Fig. 4(b) (partially constructed due to
limited space) demonstrates how a partially observed system
may introduce uncertainty for the attacker. In this example,
the attacker does not know for certain whether its attack
succeeded. The correct information at state ({1,2},D,{b,c})
contains critical as well as non-critical states, meaning the
system might not end up in a critical state. We further
investigate this subject later in this section.

({3},C)

({4},D)

{b}

{c}

{b}

{c}

{b}

{b}

{b}
{b}

{b}

{b}

{c}

{b}

b

c

a

a

cb

b

b
i

b
i

b
i

b
i

bd

bd

bdb

b

b
i

bd

bd

b
i

b
i

b
i

(a) IDA for Example IV.2 part 1

{b}
{b} {b,c}

{b}

a bi

b

(b) Partially constructed IDA for Example IV.2 part 2

Fig. 4: Results of Example IV.2

Given two IDAs A1 and A2, we say that A1 is a subsystem
of A2, denoted by A1 v A2, if QA1

E ⊆ QA2
E , QA1

S ⊆ QA2
S , and

for any y ∈ QA1
S , z ∈ QA1

E , γ ∈ Γ, and e ∈ Σ, we have that:
1) hA1

SE(y,γ) = z ⇒ hA2
SE(y,γ) = z and

2) hA1
ES(z,e) = y ⇒ hA2

ES(z,e) = y.

B. Pruning Process

Example II.1 shows how uncontrollable and uneditable
events might potentially reveal the attacker’s presence to
the supervisor, by taking it to its “dead” state. Our ultimate
objective is to construct a stealthy attack; thus we will prune
the IDA to eliminate paths that reveal the presence of the
attacker to the supervisor. The pruned IDA structure will
only contain stealthy attacks.

The pruning process can be formulated similarly as a
Basic Supervisory Control Problem (BSCP) as defined in
[20]. However, we need to include an additional condition
to ensure the non-existence of a race condition between the
attacker and the system. Specifically, we do not allow the
situation where the only possible move from the attacker

is to insert an event; i.e., it cannot be the case that letting
the event through and erasing it are both absent as possible
moves of the attacker. Adding this extra condition to the
standard algorithm for solving BSCP results in Algorithm 1.

Algorithm 1 Modified BSCP

Require: A = (QE ∪QS,E, fse ⊕ fes,a0), where E ⊆ (Σo ∪
Σe

a∪Γ) and Atrim = (At ,E, f t ,at
0), where At ⊆ QE ∪QS

1: Step 1 Compute H0 = (A0,E,g0,(a0,at
0)) = A×Atrim,

where × is the product of automata operation and A0 ⊆
(QS∪QE)× (QS∪QE), and set i = 0

2: Step 2 Calculate
3: Step 2.1 A′i = {(a,at) ∈ Yi|ΓA({a}) ∩ Euc ⊆

ΓHi({(a,at)})}
4: Step 2.2 A′′i = {(a,at)∈Y ′i | e∈ Σa∧e∈ ΓA({a})→ (e∈

ΓHi({(a,at)})∨ ed ∈ ΓHi({(a,at)})}
g′i = gi|A′′i , transition function update

5: Step 2.3 Hi+1 = Trim(A′′i ,E,g
′
i,(a0,at

0))
6: Step 3 If Hi+1 = Hi, Stop; otherwise i← i+1

Remark: The only difference between the original BSCP
algorithm [20] and its modified version in Algorithm 1 is
the addition of step 2.2 in the iteration process. Namely, any
feasible system event must either be let through or erased, in
addition to possible insertions by the attacker. That is, states
where both the “let through” transition and the “erasure”
transition are absent for a feasible system event will be
deleted, as such a situation means that the attacker is forced
to race to do insertions before the system executes that event.

Thus, to compute stealthy IDA we define as system the
IDA constructed according to Definition IV.2. Moreover,
any event in e ∈ Σa ∪ Σe

a is treated as controllable while
events e ∈ Σo\Σa and γ ∈ Γ are treated as uncontrollable.
The specification language is obtained by deleting the states
where the supervisor reaches the dead state, i.e., by deleting
in IDA all states of the form y = (S, dead) for any S ⊆ X .
We are able to consider all events in Σa as controllable since
from the attacker’s point of view, it could choose to prevent
updates of the supervisor’s state by erasing such events.
In other words, the attacker is not “disabling any feasible
uncontrollable event” in G, but rather it is suppressing the
information given to the supervisor.

Let us now formalize the pruning process for obtaining all
stealthy insertion-deletion attacks as follows.

Definition IV.3. Given the IDA A constructed according to
Definition IV.2, define the system automaton AG = A with
ΣA

c = Σa ∪ Σe
a as the set of controllable events and ΣA

uc =
(Σo\Σa)∪{γ| γ ∈ Γ} as the set of uncontrollable events. The
specification automaton is defined by Atrim, which is obtained
by trimming from AG all its states of the form (S, dead),
for any S⊆ X . The Stealthy IDA structure, denoted by AS, is
defined to be the automaton obtained after running Algorithm
1 on Atrim w.r.t. AG and Σa.

Lemma IV.1. If fA satisfies conditions (1) and (2) of
Problem III.1, then fA can be synthesized from AS.

4228

Proof. We do a sketch of the proof. Given an attacker
function fA that satisfies conditions 1 and 2 from Problem
III.1, it must be included in AS, because AS is constructed
based on the IDA A from definition IV.2. The construction
of A exhausts all possible feasible transitions in each E-state,
therefore it is the maximal structure. When we build AS, the
only states deleted are those that lead the supervisor to its
dead state. The deletion process does not remove any path
that satisfies conditions 1 and 2. Therefore, all paths of fA
must exist in AS, which means that fA can be synthesized
from AS.

Lemma IV.2. If an attacker function fA is synthesized from
AS, then conditions (1) and (2) from Problem III.1 are
satisfied.

Proof. We do a sketch of the proof. Given an attacker
function fA synthesized from the AS, we want to prove
the lemma by contradiction. Thus, assume that fA violates
condition 1 or condition 2. First, let us assume only condition
2 is violated. If condition 2 is violated, there must exist a
string s ∈L (G) s.t. SA(P(s)) = dead. But, by construction,
AS does not contain any S-state y=(y1,dead). Condition 1 on
the other hand is never violated given that the construction
of AS specifies at each E-state all feasible transitions of the
system SA/G. Therefore, fA must satisfy conditions 1 and 2
from Problem III.1.

Lemma IV.3. The All Stealthy IDA AS has all possible
stealthy insertion-deletion attacks with respect to Σa, R and
G.

Proof. The proof follows from Lemmas IV.1 and IV.2.

Example IV.3. Let us continue Example IV.2 and construct
the IDA AS for the IDA A shown in Fig. 4(a). We obtain
the specification to be used for Alg. 1 operation by deleting
the red states in Fig. 4(a). The result of the Algorithm 1 is
shown in Fig. 4(a), where states marked with a red cross were
deleted. In essence, the result says that in order to remain
stealthy, the attacker should not insert event b when it knows
that the system is in state 0 and the supervisor is in state A.
Note that, state ({2},A,{b}) is not deleted by Alg. 1, thus
we can find a successful attack strategy. One attack strategy
is to insert event b when the system is in state 1 and the
supervisor is in state B, otherwise it lets the events reach the
supervisor intact.

C. Analysis

The stealthy IDA structure AS embeds all possible
insertion-deletion actions that an attacker may perform while
remaining unnoticed by the supervisor. Nevertheless, it is
possible that none of these actions performed by the attacker
will result in the system reaching a critical state. In this
subsection, we provide some remarks about the stealthy IDA
structure, along with the main theorem that addresses our
synthesis Problem III.1.

First, let us provide a theorem based on the AS structure.

Theorem IV.1. If the stealthy IDA structure AS satisfies ASv
A /0, where A /0 is the IDA structure given Σa = /0, then there
does not exist any fA w.r.t. Σa that solves Problem III.1.

Proof. The result follows from Lemma IV.3 and that the
attacker cannot perform any action.

Theorem IV.1 only provides a necessary condition for the
existence of a successful stealthy insertion-deletion attack.
Thus, even if the AS is a strictly bigger system than A /0, there
is no guarantee of existence of a successful attack. Before
we introduce the main theorem, let us add remarks about
state properties related with AS.

Orthogonal to the strong versus weak distinction in Prob-
lem III.1, attacks can also be classified along a different axis:
critical and deadlock attacks. When the attacker successfully
induces the system into reaching a critical unsafe state, we
call this a critical attack. Alternatively, the attacker may
attempt to induce the system into entering a deadlock; this
is called a deadlock attack. Formally:

Definition IV.4. Strong critical attacks are defined to be
the set of actions performed by the attacker such that AS
reaches E-state z ∈ QE s.t. ∀x ∈ I1(z), x ∈ Xcrit . Similarly,
weak critical attacks are defined to be the set of actions
performed by the attacker such that AS reaches an E-state
z ∈ QE s.t. ∃x ∈ I1(z), x ∈ Xcrit .

Definition IV.5. Strong deadlock attacks are defined to be the
set of actions performed by the attacker such that AS reaches
E-state z ∈ QE s.t. ∀e ∈ Γ(z), Nexte(I1(z)) = /0. Similarly,
weak deadlock attacks are defined to be the set of actions
performed by the attacker such that AS reaches an E-state
z ∈ QE s.t. ∃x ∈ I1(z) and ∀e ∈ Γ(z), Nexte({x}) = /0.

Lastly, we say an attack is unsuccessful if it results in
neither a deadlock nor a critical state.

Theorem IV.2. Given the system G, the supervisor R, and
Σa, there exists fA that strongly satisfies Problem III.1 if and
only if there exists a strong critical attack in the AS structure.
On the other hand, it weakly satisfies Problem III.1 if and
only if there exists a weak critical attack in the AS structure
and there does not exist a strong critical attack.

Proof. The proof follows from Lemma IV.3.

Remark In Definition IV.5, deadlock attacks are intro-
duced. An attacker could also identify deadlocks as harmful,
with that in mind Problem III.1 could be extended to capture
deadlocks as goals for the attacker. Clearly, Theorem IV.2
could be extended to that new problem.

D. Complexity Analysis

Given G with |X | states, the current state estimator has at
most XS = 2|X |. To build the IDA, as was mentioned before,
it is necessary to maintain information of the state estimator
of G as well as the current state of supervisor R̃. Therefore
the IDA structure has the size |XS|× |Q̃| in the worst case.
In all, the space complexity of the IDA is O(|XS|× |Q̃|).

4229

V. CASE STUDY: WATER TREATMENT PLANT

The Secure Water Treatment (SWaT) system1 is a testbed
located at the Singapore University of Technology and
Design (SUTD). The system is a fully functional, scaled-
down version of an industrial plant, and it performs all
of the critical operations that are involved in a standard
water treatment process. The system is associated with a
number of safety requirements that it must satisfy, e.g., it
must always maintain the level of water in its tank below a
certain threshold. In this case study, we constructed a model
of SWaT, and used a verification tool based on a first-order
constraint solver to automatically generate stealthy attacks on
the model using the framework presented in this work. The
output of our synthesis approach describes realistic attacks
that were successfully demonstrated on SWaT in a prior
work [18], which does not provide a general formulation
of stealthy attacks as we have done in this paper. Using our
model, we generated several potential attacks that may cause
the water tank to overflow. Details of the SWaT case study
were omitted due to limited space, but can be found in [22].

VI. CONCLUSION

We have considered the problem of discovering stealthy
deception attacks that cause physical damage in CPS. We
define the attacker as an edit function that reacts to the
plant’s outputs and transforms them in a way that guarantees
stealthiness. The IDA structure was introduced to capture the
game between the environment (i.e., system and attacker) and
the given supervisor. The IDA embeds all valid actions of
the attacker. Based on the IDA, an algorithm was provided
to synthesize a stealthy IDA that embeds all stealthy actions
of an attacker. Given the stealthy IDA, we showed how to
verify if there exists an edit function that leads the system
to unsafe critical states without detection of the attack. In
contrast to related work, we do not make any assumptions
about the partitions of observable and controllable events of
the system. We also described a case study validating our
approach on a realistic example.

In the future, we plan to investigate how to modify a
supervisor that is susceptible to stealthy deception attacks.
We also plan to tackle the problem of designing directly
supervisors that enforce safety and liveness specifications and
at the same time are robust to deception attacks.

VII. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contributions of
Xiang Yin and Christoforos Keroglou in reviewing the paper
and providing insightful comments. We would also like to
thank Sridhar Adepu and Aditya P. Mathur at the Singapore
University of Technology and Design for their help with the
case study on the water treatment system. Finally, we thank
an anonymous reviewer for pointing out the need to add step
2.2 in Algorithm 1.

1https://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat

REFERENCES

[1] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards
survivable cyber-physical systems,” in 2008 The 28th International
Conference on Distributed Computing Systems Workshops, June 2008,
pp. 495–500.

[2] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack
models and scenarios for networked control systems,” in Proceedings
of the 1st International Conference on High Confidence Networked
Systems, ser. HiCoNS ’12. New York, NY, USA: ACM, 2012, pp.
55–64.

[3] D. Thorsley and D. Teneketzis, “Intrusion detection in controlled
discrete event systems,” in Proceedings of the 45th IEEE Conference
on Decision and Control, Dec 2006, pp. 6047–6054.

[4] A. Paoli, M. Sartini, and S. Lafortune, “Active fault tolerant control of
discrete event systems using online diagnostics,” Automatica, vol. 47,
no. 4, pp. 639–649, Apr. 2011.

[5] L. K. Carvalho, Y. C. Wu, R. Kwong, and S. Lafortune, “Detection
and prevention of actuator enablement attacks in supervisory control
systems,” in 13th International Workshop on Discrete Event Systems
(WODES), May 2016, pp. 298–305.

[6] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control
of discrete-event systems under attacks,” CoRR, vol. abs/1701.00881,
2017. [Online]. Available: http://arxiv.org/abs/1701.00881

[7] R. Su, “Supervisor synthesis to thwart cyber attack with bounded
sensor reading alterations,” CoRR, vol. abs/1608.04103, 2016.
[Online]. Available: http://arxiv.org/abs/1608.04103

[8] K. Rohloff, “Bounded sensor failure tolerant supervisory control,”
IFAC Proceedings Volumes, vol. 45, no. 29, pp. 272 – 277, 2012.

[9] F. Lin, “Control of networked discrete event systems: Dealing with
communication delays and losses,” SIAM Journal on Control and
Optimization, vol. 52, no. 2, pp. 1276–1298, 2014.

[10] M. V. S. Alves, J. C. Basilio, A. E. C. da Cunha, L. K. Carvalho, and
M. V. Moreira, “Robust supervisory control against intermittent loss
of observations,” IFAC Proceedings Volumes, vol. 47, no. 2, pp. 294
– 299, 2014.

[11] X. Yin, “Supervisor synthesis for mealy automata with output func-
tions: A model transformation approach,” IEEE Transactions on
Automatic Control, vol. PP, no. 99, 2016.

[12] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity
in discrete event systems,” in 46th IEEE Conference on Decision and
Control, Dec 2007, pp. 5056–5061.

[13] F. Lin, “Opacity of discrete event systems and its applications,”
Automatica, vol. 47, no. 3, pp. 496–503, Mar. 2011.

[14] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods in System Design,
vol. 40, no. 1, pp. 88–115, 2012.

[15] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of obfuscation policies to ensure privacy and utility,”
Journal of Automated Reasoning, Jul 2017. [Online]. Available:
https://doi.org/10.1007/s10817-017-9420-x

[16] X. Yin and S. Lafortune, “A uniform approach for synthesizing
property-enforcing supervisors for partially-observed discrete-event
systems,” IEEE Transactions on Automatic Control, vol. 61, no. 8,
pp. 2140–2154, Aug 2016.

[17] ——, “Synthesis of maximally-permissive supervisors for the range
control problem,” IEEE Transactions on Automatic Control, vol. PP,
no. 99, pp. 1–1, Dec. 2016.

[18] E. Kang, S. Adepu, D. Jackson, and A. P. Mathur, “Model-based
security analysis of a water treatment system,” in Proceedings of the
2nd International Workshop on Software Engineering for Smart Cyber-
Physical Systems, SEsCPS@ICSE 2016, Austin, Texas, USA, May 14-
22, 2016, 2016, pp. 22–28.

[19] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, Jan. 1987.

[20] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2008.

[21] A. Paoli and S. Lafortune, “Safe diagnosability for fault-tolerant
supervision of discrete-event systems,” Automatica, vol. 41, no. 8, pp.
1335–1347, Aug. 2005.

[22] R. M. Goes, R. Kwong, E. Kang, and S. Lafortune, “Stealthy de-
ception attacks for cyber-physical systems,” Department of Electrical
Engineering and Computer Science, Ann Arbor, Michigan, Tech. Rep.,
August 2017.

4230

